A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Evolution Characteristics of Atmospheric Formaldehyde Emissions in Guangdong Province from 2006 to 2020]. | LitMetric

Atmospheric formaldehyde, a key precursor for ozone (O) and secondary PM, is carcinogenic and plays an important role in atmospheric photochemistry and the formation of secondary pollution. However, the lack of understanding of the emission sources of atmospheric formaldehyde limits the study on the formation mechanism of secondary pollution and the formulation of pollution control strategies. This study used the emission factor and source profile methods to establish the emission inventories of formaldehyde in Guangdong Province from 2006 to 2020 and identified the main emission sources of formaldehyde and spatial and temporal evolution characteristics. The results showed that the formaldehyde emissions in Guangdong Province fluctuated in the range of 39000-56000 tons during 2006 to 2020, exhibiting a very weak downward trend. Biomass combustion is an important source of formaldehyde emission in Guangdong Province, of which the contribution decreased from 58% in 2006 to 27% in 2020 owing to effective control measures implemented in Guangdong Province. The solvent use source became the predominant emission source of formaldehyde in 2020 by contributing up to 28%, primarily through plastic products and asphalt paving sources. The construction machinery and trucks fueled by diesel were important contributors of formaldehyde emissions from mobile sources. Although the formaldehyde emissions in the Pearl River Delta and the non-Pearl River Delta were equivalent, the spatial distributions showed that formaldehyde emission hotspots were concentrated in the center of the Pearl River Delta and the eastern and western areas of the non-Pearl River Delta. This was primarily because the solvent use and mobile sources were the main sources of formaldehyde emissions in the Pearl River Delta, whereas the biomass combustion source was the dominant source in the non-Pearl River Delta. Therefore, the formaldehyde emission mitigations of the industrial and mobile sources in the central region of the Pearl River Delta and the biomass combustion source in the western area of Guangdong should be further strengthened in the future.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202209277DOI Listing

Publication Analysis

Top Keywords

river delta
28
formaldehyde emissions
20
guangdong province
20
pearl river
16
formaldehyde
13
atmospheric formaldehyde
12
sources formaldehyde
12
biomass combustion
12
combustion source
12
formaldehyde emission
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!