A ratiometric fluorescence sensor based on the inner filtration effect of gold nanoparticles on quantum dots for monitoring dopamine.

Spectrochim Acta A Mol Biomol Spectrosc

College of Science, Hebei Agricultural University, Baoding, Hebei 071001, PR China; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding, Hebei 071001, PR China. Electronic address:

Published: January 2024

In this study, a smart phone assisted ratiometric fluorescence sensor was designed for detecting dopamine (DA). The ratiometric fluorescence sensor was prepared by simple physical mixing green quantum dots (GQDS) and red quantum dots (RQDS). DA could induce gold nanoparticles (AuNPs) aggregate via hydrogen-bonding interactions, and further changed the absorption spectrum of gold nanoparticles to overlap with a certain emission spectrum of ratiometric fluorescence sensor. AuNPs had inner filtration effect (IFE) on the ratiometric fluorescence sensor. Due to the IFE, the dispersive AuNPs could quench GQDS, whereas the clustered AuNPs could quench RQDS. With the addition of DA, the color of ratiometric fluorescence changed from orange red to green. To simplify the detection process, a smartphone was employed to detecting DA in human urine by measuring RGB value of fluorescence color changes with a detection limit of 86 nM. This proposed method has the advantages of low cost, easy prevalence and simple operation, thus provides a great promise for rapid detection of biomarker in biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123374DOI Listing

Publication Analysis

Top Keywords

ratiometric fluorescence
24
fluorescence sensor
20
gold nanoparticles
12
quantum dots
12
inner filtration
8
aunps quench
8
ratiometric
6
fluorescence
6
sensor
5
sensor based
4

Similar Publications

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline homologues based on N-CDs‒Eu complex.

Mikrochim Acta

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline (TC) homologues was fabricated based on N-CDs-Eu complex. In the sensing system, N-CDs act as a sensitizer of Eu and significantly enhance the fluorescence of TC-Eu complex approximate 40-fold owing to the synergistic effect of antenna effect (AE) and fluorescence resonance energy transfer (FRET). A paper sensor integrated with a smartphone platform is further fabricated for on-site measurement of TC.

View Article and Find Full Text PDF

Dual Ratiometric Fluorescence Sensors Based on Chiral Carbon Dots for the Sensitive and Specific Detection of Arginine.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.

Arginine (Arg) is involved in tissue metabolism and regulates the immune function; thereby, achieving the detection of Arg is crucial for early diagnosis and treatment of diseases. Herein, dual ratiometric fluorescence sensors were prepared with the blue emission of levorotatory/dextrorotatory carbon dots (CDs) and the red emission of porphyrin (L/D-CDs-PP) for the sensitive and portable detection of Arg. Interestingly, L-CDs-PP and D-CDs-PP displayed not only the dual emission peaks at 493 and 650 nm but also different response modes to Arg; thus, they could serve as dual ratiometric fluorescence sensors to achieve the accurate and reliable detection of Arg, with the detection limit of 23.

View Article and Find Full Text PDF

Aiming to enable online freshness-monitoring of meat within modified-atmosphere package, we developed a ratiometric array that was fluorescently responsive to volatile organic compounds-ammonia (NH) released by protein decaying. The array was consisted of two 3 mm × 6 mm rectangles precisely and uniformly printed with fluorescein isothiocyanate (FITC) as indicator and rhodamine B (RhB) as internal reference on the filter-paper, respectively. The fluorescence intensity of the array area was calibrated according to Green/Red ratio of the digitalized pixels extracted from images facilitated by a smartphone.

View Article and Find Full Text PDF

Flow Cytometry Analysis of Perturbations in the Bacterial Cell Envelope Enabled by Monitoring Generalized Polarization of the Solvatochromic Peptide UNR-1.

Anal Chem

January 2025

Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.

The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.

View Article and Find Full Text PDF

High quantum yield copper nanoclusters integrated with nitrogen-doped carbon dots for off-on ratiometric fluorescence sensing of S and Zn.

Talanta

January 2025

Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.

Pursuing nanomaterials with high fluorescence quantum yields is of great significance in the fields of bioimaging, medical diagnosis, and food safety monitoring. This work reports on orange-emitting aggregation-induced emission (AIE) copper nanoclusters (Cu NCs) integrated with blue-emitting nitrogen-doped carbon dots (N-CDs), which enables highly sensitive detection of S and Zn ions through an off-on ratiometric fluorescence method. The highly emissive Cu NCs was doped by Ce with a high quantum yield of 51.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!