Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
can cause severe foodborne illness, including miscarriage during pregnancy or death in newborn infants. When outbreaks of illness occur, it may be possible to determine the food source of the outbreak. However, most reported illnesses do not occur as part of a recognized outbreak and most of the time the food source of sporadic illness in people cannot be determined. In the United States, isolates from patients, foods, and environments are routinely sequenced and analyzed by whole genome multilocus sequence typing (wgMLST) for outbreak detection by PulseNet, the national molecular surveillance system for foodborne illnesses. We investigated whether machine learning approaches applied to wgMLST allele call data could assist in attribution analysis of food source of isolates. We compiled isolates with a known source from five food categories (dairy, fruit, meat, seafood, and vegetable) using the metadata of isolates in PulseNet, deduplicated closely genetically related isolates, and developed random forest models to predict the food sources of isolates. Prediction accuracy of the final model varied across the food categories; it was highest for meat (65%), followed by fruit (45%), vegetable (45%), dairy (44%), and seafood (37%); overall accuracy was 49%, compared with the naive prediction accuracy of 28%. Our results show that random forest can be used to capture genetically complex features of high-resolution wgMLST for attribution of isolates to their sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/fpd.2023.0046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!