Summary: In functional imaging studies, accurately synchronizing the time course of experimental manipulations and stimulus presentations with resulting imaging data is crucial for analysis. Current software tools lack such functionality, requiring manual processing of the experimental and imaging data, which is error-prone and potentially non-reproducible. We present VoDEx, an open-source Python library that streamlines the data management and analysis of functional imaging data. VoDEx synchronizes the experimental timeline and events (e.g. presented stimuli, recorded behavior) with imaging data. VoDEx provides tools for logging and storing the timeline annotation, and enables retrieval of imaging data based on specific time-based and manipulation-based experimental conditions.

Availability And Implementation: VoDEx is an open-source Python library and can be installed via the "pip install" command. It is released under a BSD license, and its source code is publicly accessible on GitHub (https://github.com/LemonJust/vodex). A graphical interface is available as a napari-vodex plugin, which can be installed through the napari plugins menu or using "pip install." The source code for the napari plugin is available on GitHub (https://github.com/LemonJust/napari-vodex). The software version at the time of submission is archived at Zenodo (version v1.0.18, https://zenodo.org/record/8061531).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10562951PMC
http://dx.doi.org/10.1093/bioinformatics/btad568DOI Listing

Publication Analysis

Top Keywords

imaging data
24
python library
12
functional imaging
12
vodex open-source
8
open-source python
8
data vodex
8
"pip install"
8
source code
8
imaging
7
data
7

Similar Publications

Role of data-driven regional growth model in shaping brain folding patterns.

Soft Matter

January 2025

School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.

View Article and Find Full Text PDF

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Excessive kidney mobility is an underestimating challenge for surgeons during retrograde intrarenal surgery (RIRS) and extracorporeal shock wave lithotripsy (ESL). There is no technique approved as a gold standard procedure for reducing excessive kidney mobility. The study aimed to uncover predictive factors for determining excessive renal mobility by utilizing clinicodemographic characteristics and noncontrast computed tomography (NCCT) data.

View Article and Find Full Text PDF

Background: The aim of this study was to examine the potential added value of including neuropsychiatric symptoms (NPS) in machine learning (ML) models, along with demographic features and Alzheimer's disease (AD) biomarkers, to predict decline or non-decline in global and domain-specific cognitive scores among community-dwelling older adults.

Objective: To evaluate the impact of adding NPS to AD biomarkers on ML model accuracy in predicting cognitive decline among older adults.

Methods: The study was conducted in the setting of the Mayo Clinic Study of Aging, including participants aged ≥ 50 years with information on demographics (i.

View Article and Find Full Text PDF

CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning.

Med Image Comput Comput Assist Interv

October 2024

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Recent advancements in Contrastive Language-Image Pre-training (CLIP) [21] have demonstrated notable success in self-supervised representation learning across various tasks. However, the existing CLIP-like approaches often demand extensive GPU resources and prolonged training times due to the considerable size of the model and dataset, making them poor for medical applications, in which large datasets are not always common. Meanwhile, the language model prompts are mainly manually derived from labels tied to images, potentially overlooking the richness of information within training samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!