Inter-cluster conversion through the strategic tuning of external stimuli and thereby modulation of the optical properties of metal nanoclusters (MNCs) is an emerging domain for exploration. Herein, we report the preparation of blue-emitting CuNCs using phenylalanine (Phe) as a template under acidic conditions (pH ∼ 4). The as-prepared CuNCs exhibit a sequential tuning of the photophysical properties upon varying the pH of the solution from pH ∼4 to pH ∼12. Blue-emitting CuNCs (B-CuNCs, = 410 nm) are systematically converted to cyan-emitting CuNCs (C-CuNCs, = 490 nm) with a large red-shifted emission maximum by 80 nm as a function of pH. Our present investigation delineates an unprecedented switchability of the photoluminescence (PL) properties of the CuNCs with the variations of the pH from pH ∼4 to pH ∼12. Both the Phe-templated CuNCs (B-CuNCs and C-CuNCs) were broadly characterized by various spectroscopic and morphological techniques. The X-ray photoelectron spectroscopy (XPS) studies reveal the presence of different oxidation states in the metallic core of B-CuNCs and C-CuNCs. These results in turn substantiate the pH-induced intercluster conversion of CuNCs through the substantial change in their core composition as well as valence states. Owing to the pH sensitivity, the CuNCs act as an efficient and highly sensitive probe for CO, and quantitative estimation of the dissolved CO in the form of bicarbonate ions has been achieved through the enhancement of the PL intensity, wherein a very low value of the limit of detection (LOD) of ∼60 μM was obtained. Furthermore, we demonstrated that the CuNCs act as an efficient bio-catalyst with peroxidase mimicking enzymatic activity which has been investigated using OPD as a substrate under physiological conditions (pH ∼7.4 and temperature ∼37 °C). The mechanistic investigations confirmed that the oxidation of OPD mainly proceeds through the generation of hydroxyl radicals (˙OH). We hope the present investigations shed light on a multidimensional aspect of MNCs and uncover an upsurging recent interest in MNCs to act as an artificial enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr04195f | DOI Listing |
ACS Appl Bio Mater
December 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.
View Article and Find Full Text PDFBME Front
December 2024
Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
Mercury (Hg) has been recognized as a global pollutant with a toxic, mobile, and persistent nature. It adversely affects the ecosystem and human health. Already developed biosensors for Hg detection majorly suffer from poor sensitivity and specificity.
View Article and Find Full Text PDFBioelectrochemistry
November 2024
Life Science and Chemistry College, Hunan University of Technology, Zhuzhou 412007, China. Electronic address:
Early cancer diagnosis is paramount for enhancing treatment efficacy, extending patient survival, and improving the quality of life. We developed a highly sensitive electrochemical biosensor for the detection of target DNA (tDNA) associated with gastric cancer. This advancement integrates dual signal amplification strategies: bio-barcode amplification (BCA) and surface-initiated enzyme polymerization (SIEP), with copper nanoclusters (CuNCs) serving as signal labels.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
Chemistry Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Food Chem
February 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt. Electronic address:
Terbium and nitrogen co-doped carbon dots (Tb@N-CDs), combined with α-lipoic acid-functionalized copper nanoclusters (LA@CuNCs), were proposed for the ratiometric detection of quinolone (QA) antibiotics. In this system, Tb@N-CDs facilitate the aggregation of LA@CuNCs, enhancing its fluorescence emission at 670 nm via aggregation-induced emission enhancement (AIEE). Meanwhile, the fluorescence emission of Tb@N-CDs at 460 nm diminishes due to Förster resonance energy transfer (FRET).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!