A 3D hydrodynamic model (EFDC) was applied to simulate dissolved oxygen (DO) and temperature (T) (two crucial parameters impacting water quality) throughout Lake St. Charles, a rural-urban shallow lake located North of Quebec City, Canada. Model outputs of T and DO corroborate observations at five monitoring stations within the lake. Simulated results indicated annual cycles of turnovers and stratifications and different behaviors for the deep and shallow basins. For the simulated years, the deep basin was stratified in summer and winter, while the shallow basin was mostly mixed throughout the year. The lake heat budget indicates that during summer with a long retention time, the thermal structure of the lake is principally controlled by net radiation, latent, and sensible heat fluxes. For the rest of the year, the inflow (from the main tributary, the Des Hurons River) and outflow are the main drivers of the lake's thermal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-023-11744-2 | DOI Listing |
JACS Au
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
Slow mass transfer processes between inert emerging contaminants (ECs) and dissolved oxygen (DO) limit natural water self-purification; thus, excessive energy consumption is necessary to achieve ECs removal, which has become a longstanding global challenge. Here, we propose an innovative water self-purification expansion strategy by constructing asymmetric surfaces that could modulate trace HO as trigger rather than oxidant to bridge a channel between inert ECs and natural dissolved oxygen, achieved through a dual-reaction-center (DRC) catalyst consisting of Cu/Co lattice-substituted ZnO nanorods (CCZO-NRs). During water purification, the bond lengths of emerging contaminants (ECs) adsorbed on the asymmetric surface were stretched, and this stretching was further enhanced by HO mediation, resulting in a significant reduction of bond-breaking energy barriers.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
Nitrate, a highly reactive form of inorganic nitrogen, is commonly found in aquatic environments. Understanding the dynamics of nitrate-N concentration in rivers and its interactions with other water-quality parameters is crucial for effective freshwater ecosystem management. This study uses advanced machine learning models to analyse water quality parameters and predict nitrate-N concentrations in the lower stretch of the Ganga River from the observations of six annual periods (2017 to 2022).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
Floating photovoltaics (FPVs), solar panels installed on floating structures in freshwater ecosystems such as lakes, represent a growing renewable technology aimed at decarbonizing the energy sector. However, robust empirical assessments of its environmental effects are still lacking. We used a Before-After-Control-Impact design replicated at the ecosystem level (n = 6 lakes: three lakes with FPV compared to three non-FPV lakes) to determine the global effects of FPV on water temperature over three years and allowing to isolate FPV effects from natural variability.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
Anal Chem
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!