Introduction: Instrumentation using the intraoperative O-arm navigation technique appears safer than its predecessor techniques. However, only a handful of surgeons often used navigation during spinal surgeries. Too many operative glitches and unreliable navigation accuracy were the important reasons cited even by experienced surgeons for not using spinal navigation. We have studied the accuracy of pedicle screw placement during the learning curve and beyond it. We have also discussed in detail the intricacies of the technique and solutions to the difficulties encountered using spinal navigation.

Materials And Methods: A total of 2000 thoracolumbar pedicle screws have been placed in the 324 spine surgeries meeting the inclusion and exclusion criteria included in this retrospective study. We have divided 2000 pedicle screw placements into consecutive groups of 200 each. We have compared these groups for the accuracy of screw placement with the surgeon's experience.

Results: The accuracy of pedicle screw placement using the "in-versus-out" grading system in group 1 was 85.5% which significantly increased in group 2 to 93.5% (p-value: 0.0099), and thereafter, there was a nonsignificant increase in subsequent groups with the graph achieving the shape of a plateau.

Conclusion: Surgeons should learn the correct principles of the technique of O-arm navigation to prevent the loss of accuracy and place pedicle screws with high accuracy. There is a learning curve of around 30-35 surgeries or 200 pedicle screw placements to acclimatize with the technique of O-arm navigation and learn its principles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-023-07922-yDOI Listing

Publication Analysis

Top Keywords

pedicle screw
20
o-arm navigation
16
learning curve
12
screw placements
12
screw placement
12
2000 thoracolumbar
8
thoracolumbar pedicle
8
accuracy pedicle
8
pedicle screws
8
technique o-arm
8

Similar Publications

Osteoporotic vertebral fractures (OVFs) in elderly patients pose challenges due to bone destruction and surgical risks. This case report describes a minimally invasive approach using calcium phosphate cement (CPC) vertebroplasty and short fusion with cement augmentation of pedicle screws (CAPS) in a 91-year-old woman with severe OVF. The patient underwent CPC vertebroplasty at L1 and CAPS fixation at T12-L2, followed by osteoporosis medication.

View Article and Find Full Text PDF

Rationale: Alkaptonuria (AKU) is a rare, inherited metabolic disease caused by deficient activity of homogentisic acid oxidase, leading to the accumulation of homogentisic acid and its oxidized product, benzoquinone acetic acid. These compounds cause black discoloration of cartilage, degeneration, inflammation, and calcification of intervertebral disks and large joints, resulting in pain and impaired quality of life. Despite its debilitating effects, there are no curative treatments for AKU, and management remains supportive.

View Article and Find Full Text PDF

Study Design: Retrospective Cohort Study.

Objective: This study aimed to compare outcomes in AIS patients that underwent PSF using either freehand with occasional fluoroscopic assistance (FOFA), computer assisted surgery/navigation (CAS), or technique and technology (T&T).

Summary Of Background Data: Pedicle screw insertion in scoliosis is challenging due to abnormal pedicle morphology.

View Article and Find Full Text PDF

Background: This meta-analysis was conducted to compare the efficacy and safety of vertebral augmentation (VA) plus pedicle screw fixation (PSF) with VA for treating osteoporotic thoracolumbar fractures (OTLFs).

Methods: A comprehensive search was conducted in PubMed, Embase, Cochrane Library and China National Knowledge Infrastructure (CNKI) to identify studies comparing PSF+VA with VA for treating OTLF. The primary outcomes were operation time, blood loss, length of stay, visual analogue scale (VAS) score, Oswestry disability index (ODI), Cobb angle, anterior vertebral height (AVH), bone cement leakage, secondary fracture and other adverse events.

View Article and Find Full Text PDF

Background: In atlantoaxial instabilities, posterior C1/C2 fusion using lateral mass screws (LMS) or pedicle screws (PS) in a mono- or bicortical position in the atlas is a typical treatment. The bone microstructure and positioning of the screw trajectories appear to be of significant relevance for stability.

Purpose: The aim of this study was a comparative analysis of the mechanical durability of screw fixation concerning microstructural characteristics of the trajectories of LMS and PS in mono- and bicortical position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!