Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.202300056 | DOI Listing |
Water Res
December 2024
College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China. Electronic address:
Perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) are widely used substitutes to perfluorooctanoic acid (PFOA). Whether these substitutes are less toxic than PFOA remains unclear owing to differences in the experimental methods, test organisms, and other experimental conditions in previous studies. The present study selected 0.
View Article and Find Full Text PDFHum Reprod
December 2024
IVIRMA Global Research Alliance, IVI Foundation, Health Research Institute La Fe, Valencia, Spain.
Study Question: Is it possible to predict an euploid chromosomal constitution and identify a transcriptomic profile compatible with extended embryonic development from RNA sequencing (RNA-Seq) data?
Summary Answer: It has been possible to obtain a karyotype comparable to preimplantation genetic testing for aneuploidy (PGT-A), in addition to a transcriptomic signature of embryos which might be suggestive of improved implantation capacity.
What Is Known Already: Conventional assessment of embryo competence, based on morphology and morphokinetic, lacks knowledge of molecular aspects and faces controversy in predicting ploidy status. Understanding the embryonic transcriptome is crucial, as gene expression influences development and implantation.
Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Objective: Spinal cord injury (SCI) is a severe and permanent nerve damage condition that poses significant burdens on individuals and society. Various therapeutic approaches have been explored to mitigate the consequences of SCI. Tissue engineering and regenerative medicine have emerged as a promising avenue for addressing this issue.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Application of Laser, Ophthalmic Unit, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
Corneal alkali burns persist as a significant challenge in our field, often leading to a prolonged treatment course with various sight-threatening problems. This work, of utmost importance, aimed to apply the photo-tissue bonding technique (PTB) to weld the amniotic membrane (AM) to the corneal surface versus an amniotic membrane graft (AMG) and explore its safety in saving corneal protein against alkali burn.Methods Twenty-seven rabbits with an induced corneal ulcer using 1 mol/L NaOH solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!