A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quizartinib inhibits necroptosis by targeting receptor-interacting serine/threonine protein kinase 1. | LitMetric

AI Article Synopsis

  • * Researchers found that inhibiting a protein called RIPK1 can effectively treat SIRS, identifying the drug quizartinib as a promising candidate through high-throughput screening of FDA-approved drugs.
  • * Quizartinib works by directly blocking RIPK1 activity, preventing necroptosis, and demonstrating protective effects in mice with TNFα-induced SIRS, laying the groundwork for its use in treating inflammatory diseases.

Article Abstract

Systemic inflammatory response syndrome (SIRS), at least in part driven by necroptosis, is characterized by life-threatening multiple organ failure. Blocking the progression of SIRS and consequent multiple organ dysfunction is challenging. Receptor-interacting serine/threonine protein kinase 1 (RIPK1) is an important cell death and inflammatory mediator, making it a potential treatment target in several diseases. Here, using a drug repurposing approach, we show that inhibiting RIPK1 is also an effective treatment for SIRS. We performed cell-based high-throughput drug screening of an US Food and Drug Administration (FDA)-approved drug library that contains 1953 drugs to identify effective inhibitors of necroptotic cell death by SYTOX green staining. Dose-response validation of the top candidate, quizartinib, was conducted in two cell lines of HT-22 and MEFs. The effect of quizartinib on necroptosis-related proteins was evaluated using western blotting, immunoprecipitation, and an in vitro RIPK1 kinase assay. The in vivo effects of quizartinib were assessed in a murine tumor necrosis factor α (TNFα)-induced SIRS model. High-throughput screening identified quizartinib as the top "hit" in the compound library that rescued cells from necroptosis in vitro. Quizartinib inhibited necroptosis by directly inhibiting RIPK1 kinase activity and blocking downstream complex IIb formation. Furthermore, quizartinib protected mice against TNFα-induced SIRS. Quizartinib, as an FDA-approved drug with proven safety and efficacy, was repurposed for targeted inhibition of RIPK1. This work provides essential preclinical data for transferring quizartinib to the treatment of RIPK1-dependent necroptosis-induced inflammatory diseases, including SIRS.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202300600RRDOI Listing

Publication Analysis

Top Keywords

quizartinib
9
receptor-interacting serine/threonine
8
serine/threonine protein
8
protein kinase
8
multiple organ
8
cell death
8
inhibiting ripk1
8
fda-approved drug
8
ripk1 kinase
8
tnfα-induced sirs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!