Introduction/aims: Brachial plexus injury can seriously affect distal target muscle function, and long-term denervation leads to irreversible structural damage. In the present study, we examined the effect of hemin, a heme oxygenase-1 (HO-1) inducer, on intrinsic forepaw muscle atrophy induced by pan-plexus injury in juvenile rats, as well as its underlying mechanism.
Methods: A global brachial plexus avulsion (GBPA) model of rat was established, and thirty 6-wk-old male rats were randomly divided into five groups: control, GBPA plus scramble small intering RNA (siRNA), GBPA plus scramble siRNA plus hemin, GBPA plus HO-1 siRNA, and GBPA plus HO-1 siRNA plus hemin. Hemin (50 mg/kg) was administered intraperitoneally once daily and the siRNA (5 μg) was injected intramuscularly twice a week. Intrinsic forepaw muscles were used for analysis. Myofiber cross-sectional area (CSA), capillary-to-fiber ratio (C/F), and fiber-type composition were assessed. The levels of inflammatory factors, ubiquitin-protein ligases, and autophagy-related proteins were also measured.
Results: We found that hemin treatment could effectively ameliorate denervated intrinsic forepaw muscle atrophy and suppress type I to II myofiber-type conversion. Hemin treatment failed to prevent muscle capillary loss after denervation. The levels of inflammatory factors (tumor necrosis factor alpha [TNFα] and interleukin 6 [IL-6]), ubiquitin-protein ligases (MuRF-1 and MAFbx), and autophagy-related proteins (BNIP3 and LC3B-II/I ratio) were increased by denervation and HO-1 therapy attenuated the increment.
Discussion: Upregulation of HO-1 might potentially be an effective strategy to alleviate denervation-related muscle atrophy and might be a promising adjunctive treatment to improve hand function in children with pan-plexus injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mus.27972 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!