A pair of simulated left and right circularly polarized ultra-fast laser pulses of duration 20 femtoseconds that induce a mixture of excited states are applied to ethane. The response of the electron dynamics is investigated within the next generation quantum theory of atoms in molecules (NG-QTAIM) using third-generation eigenvector-trajectories which are introduced in this work. This enables an analysis of the mechanical and chiral properties of the electron dynamics of ethane without needing to subject the C-C bond to external torsions as was the case for second-generation eigenvector-trajectories. The mechanical properties, in particular, the bond-flexing and bond-torsion were found to increase depending on the plane of the applied laser pulses. The bond-flexing and bond-torsion, depending on the plane of polarization, increases or decreases after the laser pulses are switched off. This is explainable in terms of directionally-dependent effects of the long-lasting superpositions of excited states. The chiral properties correspond to the ethane molecule being classified as formally achiral consistent with previous NG-QTAIM investigations. Future planned investigations using ultra-fast circularly polarized lasers are briefly discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.27225 | DOI Listing |
Small
January 2025
SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751 005, India.
Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznan, 61-614, Poland.
The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.
View Article and Find Full Text PDFStruct Dyn
January 2025
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Sub-ångström spatial resolution of electron density coupled with sub-femtosecond to few-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation, such as by soft X-rays. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here, we propose to reach this realm by employing convergent-beam x-ray crystallography with high-power attosecond pulses from a hard-x-ray free-electron laser.
View Article and Find Full Text PDFA novel, to the best of our knowledge, approach for the modal decomposition of a fiber laser beam is demonstrated using a spatial mode multiplexer. Since the modal decomposition is carried out optically, this approach is able to obtain the modal content at speeds up to the GHz level. In order to demonstrate such performance, we have applied this approach to the modal analysis of a -switched pulse generated in a multimode fiber with alternating intra-pulse mode content.
View Article and Find Full Text PDFWe demonstrate experimentally an efficient terahertz emitter that consists of a 20 µm thick layer of LiNbO clamped between a fused silica substrate and a Si semicone. A focused laser beam from an ultrafast optical oscillator propagates in the LiNbO layer and emits a Cherenkov cone of terahertz radiation to the Si semicone. The radiation is totally internally reflected by the semicone's convex surface and escapes the semicone through its base as a collimated beam.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!