Study Design: Cross-sectional database study.

Objective: The purpose of this study was to develop a successful, reproducible, and reliable convolutional neural network (CNN) model capable of segmentation and classification for grading intervertebral disc degeneration (IVDD), as well as quantify the network's impact on doctors' clinical decision-making.

Methods: 5685 discs from 1137 patients were graded separately by four experienced doctors according to the Pfirrmann classification. A ground truth (GT) was established for each disc in accordance with the decision of the majority of doctors. The U-net model is used for segmentation. 1815 discs from 363 patients were used to train and test the U-net. The Inception V3 model is employed for classification. All discs were separated into two distinct sets: 90% in a training set and 10% in a test set. The performance metrics of these models were measured. Reliability tests were performed. The impact of CNN assistance on doctors was assessed.

Results: Segmentation accuracy was .9597 with a .8717 Jaccard Index and a .9314 Sorensen Dice coefficient. Classification accuracy is .9346, and the F1 score is .9355. The intraclass correlation coefficient (ICC) and kappa values between CNN and GT were .95-.97. With CNN's assistance, the success rates of doctors increased by 7.9% to 22%.

Conclusions: The fully automated network outperformed doctors markedly in terms of accuracy and reliability. The results of CNN were comparable to those of other recent studies in the literature. It was determined that CNN's assistance had a substantial positive effect on the doctor's decision.

Download full-text PDF

Source
http://dx.doi.org/10.1177/21925682231200783DOI Listing

Publication Analysis

Top Keywords

segmentation classification
8
cnn's assistance
8
classification
5
doctors
5
automatized deep
4
segmentation
4
deep segmentation
4
model
4
classification model
4
model lumbar
4

Similar Publications

Systematic Review of Hybrid Vision Transformer Architectures for Radiological Image Analysis.

J Imaging Inform Med

January 2025

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.

Vision transformer (ViT)and convolutional neural networks (CNNs) each possess distinct strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while CNNs are adept at extracting local features via spatial convolution filters. While ViT may struggle with capturing detailed local spatial information, critical for tasks like anomaly detection in medical imaging, shallow CNNs often fail to effectively abstract global context. This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to leverage their complementary strengths for enhanced performance in medical vision tasks, such as segmentation, classification, reconstruction, and prediction.

View Article and Find Full Text PDF

The are a family of non-segmented positive-sense enveloped RNA viruses containing significant pathogens including hepatitis C virus and yellow fever virus. Recent large-scale metagenomic surveys have identified many diverse RNA viruses related to classical orthoflaviviruses and pestiviruses but quite different genome lengths and configurations, and with a hugely expanded host range that spans multiple animal phyla, including molluscs, cnidarians and stramenopiles,, and plants. Grouping of RNA-directed RNA polymerase (RdRP) hallmark gene sequences of flavivirus and 'flavi-like' viruses into four divergent clades and multiple lineages within them was congruent with helicase gene phylogeny, PPHMM profile comparisons, and comparison of RdRP protein structure predicted by AlphFold2.

View Article and Find Full Text PDF

High resolution peripheral quantitative computed tomography (HRpQCT) offers detailed bone geometry and microarchitecture assessment, including cortical porosity, but assessing chronic kidney disease (CKD) bone images remains challenging. This proof-of-concept study merges deep learning and machine learning to 1) improve automatic segmentation, particularly in cases with severe cortical porosity and trabeculated endosteal surfaces, and 2) maximize image information using machine learning feature extraction to classify CKD-related skeletal abnormalities, surpassing conventional DXA and CT measures. We included 30 individuals (20 non-CKD, 10 stage 3 to 5D CKD) who underwent HRpQCT of the distal and diaphyseal radius and tibia and contributed data to develop and validate four different AI models for each anatomical site.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression in tumor cells. TNBC represents about 15% to 20% of all breast cancers and is aggressive and highly malignant. Currently, TNBC diagnosis primarily depends on pathological examination, while treatment efficacy is assessed through imaging, biomarker detection, pathological evaluation, and clinical symptom improvement.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!