Malaria continues to be a major public health challenge worldwide and, as part of the global effort toward malaria eradication, plasmodium carbonic anhydrases (CAs) have recently been proposed as potential targets for malaria treatment. In this study, a series of eight hybrid compounds combining the Artesunate core with a sulfonamide moiety were synthesized and evaluated for their inhibition potency against the widely expressed human (h) CAs I, II and the isoform from P. falciparum (PfCA). All derivatives demonstrated high inhibition potency against PfCA, achieving a K value in the sub-nanomolar range (0.35 nM). Two Compounds showed a selectivity index of 4.1 and 3.1, respectively, against this protozoan isoform compared to hCA II. Three Derivatives showed no cytotoxic effects on human gingival fibroblasts at 50 μM with a high killing rate against both P. falciparum and P. knowlesi strains with IC in the sub-nanomolar range, providing a wide therapeutic window. Our findings suggest that these compounds may serve as promising leads for developing new antimalarial drugs and warrant further investigation, including activity against antimalarial-resistant strains, mode of action studies, and in vivo efficacy assessment in preclinical mouse models of malaria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202300267DOI Listing

Publication Analysis

Top Keywords

hybrid compounds
8
inhibition potency
8
sub-nanomolar range
8
antimalarial agents
4
agents targeting
4
targeting plasmodium
4
plasmodium falciparum
4
falciparum carbonic
4
carbonic anhydrase
4
anhydrase artesunate
4

Similar Publications

The search for effective anti-cancer therapies has led to the exploration of dual inhibition strategies targeting multiple key molecular pathways. In this study, we aimed to design a novel candidate capable of dual inhibition targeting both EGFR (Epidermal Growth Factor Receptor) and PARP-1 (poly(ADP-ribose)polymerase-1), two crucial proteins implicated in cancer progression and resistance mechanisms. Through molecular hybridization and structure-based drug design approaches, we synthesized a series of compounds based on spirooxindole with triazole scaffolds with the potential for dual EGFR and PARP-1 inhibition.

View Article and Find Full Text PDF

Anti-gene oligonucleotide clamps invade dsDNA and downregulate expression.

Mol Ther Nucleic Acids

December 2024

Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 14152 Huddinge, Stockholm, Sweden.

Anti-gene oligonucleotides belong to a group of therapeutic compounds, which, in contrast to antisense oligonucleotides, bind to DNA. Clamp anti-gene oligonucleotides bind through a double-stranded invasion mechanism. With two arms connected by a linker, they hybridize to one of the DNA strands forming Watson-Crick and Hoogsteen hydrogen bonds.

View Article and Find Full Text PDF

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.

An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

EGFR inhibitors are a class of targeted therapies utilized in the management of certain tumor kinds such as NSCLC and breast cancer. Series of 1,2,3-triazole-Schiff's base hybrids were designed, synthesized, and estimated for their antitumor effect toward breast cancer cells, MCF-7 and MDA-MB-231. The safety and selectivity of the new compounds were tested using normal cell (WI-38).

View Article and Find Full Text PDF

Benchmark of Density Functional Theory in the Prediction of C Chemical Shielding Anisotropies for Anisotropic Nuclear Magnetic Resonance-Based Structural Elucidation.

J Chem Theory Comput

January 2025

Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.

Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!