Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: In the last decade numerous real-world data networks have been established in order to leverage the value of data from electronic health records for medical research. In Germany, a nation-wide network based on electronic health record data from all German university hospitals has been established within the Medical Informatics Initiative (MII) and recently opened for researcherst' access through the German Portal for Medical Research Data (FDPG). In Bavaria, the six university hospitals have joined forces within the Bavarian Cancer Research Center (BZKF). The oncology departments aim at establishing a federated observational research network based on the framework of the MII/FDPG and extending it with a clear focus on oncological clinical data, imaging data and molecular high throughput analysis data.
Methods: We describe necessary adaptions and extensions of existing MII components with the goal of establishing a Bavarian oncology real world data research platform with its first use case of performing federated feasibility queries on clinical oncology data.
Results: We share insights from developing a feasibility platform prototype and presenting it to end users. Our main discovery was that oncological data is characterized by a higher degree of interdependence and complexity compared to the MII core dataset that is already integrated into the FDPG.
Discussion: The significance of our work lies in the requirements we formulated for extending already existing MII components to match oncology specific data and to meet oncology researchers needs while simultaneously transferring back our results and experiences into further developments within the MII.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI230696 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!