AI Article Synopsis

  • Coastal groundwater-dependent ecosystems (GDEs) are crucial for biodiversity and provide essential services, yet they face threats from groundwater depletion and climate change, leading to declines in their health and function.
  • Despite existing policies in regions like Queensland and California aimed at protecting these ecosystems, significant policy gaps persist, including a lack of recognition of groundwater systems, fragmented governance, and insufficient management guidance.
  • To enhance the conservation of coastal GDEs, the study recommends adopting ecosystem-based management principles that integrate efforts across various agencies, aiming for comprehensive policy frameworks that address the complexities of these ecosystems for sustainable conservation efforts.

Article Abstract

Coastal groundwater-dependent ecosystems (GDEs), such as wetlands, estuaries and nearshore marine habitats, are biodiversity hotspots that provide valuable ecosystem services to society. However, coastal groundwater and associated ecosystems are under threat from groundwater exploitation and depletion, as well as climate change impacts from sea-level rise and extreme flood and drought events. Despite many well-intentioned policies focused on sustainable groundwater use and species protection, coastal GDEs are falling through gaps generated by siloed policies and as a result, are declining in extent and ecological function. This study summarized then examined policies related to the management of coastal groundwater and connected ecosystems in two key case study areas: Queensland (Australia) and California (USA). Despite both areas being regarded as having progressive groundwater policy, our analysis revealed three universal policy gaps, including (1) a lack of recognition of the underlying groundwater system, (2) fragmented policies and complex governance structures that limit coordination, and (3) inadequate guidance for coastal GDE management. Overall, our analysis revealed that coastal GDE conservation relied heavily on inclusion within protected areas or was motivated by species recovery, meaning supporting groundwater systems remained underprotected and outside the remit of conservation efforts. To close these gaps, we consider the adoption of ecosystem-based management principles to foster integrated governance between disparate agencies and consider management tools that bridge traditional conservation realms. Our findings advocate for comprehensive policy frameworks that holistically address the complexities of coastal GDEs across the land-sea continuum to foster their long-term sustainability and conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.13352DOI Listing

Publication Analysis

Top Keywords

coastal
8
coastal groundwater-dependent
8
groundwater-dependent ecosystems
8
policy gaps
8
coastal groundwater
8
coastal gdes
8
analysis revealed
8
coastal gde
8
groundwater
7
ecosystems
4

Similar Publications

Background: People with brain injury can have lower resiliency compared to the general public. Yet, resiliency facilitates positive processes to negotiate adversity after brain injury. Therefore, measuring resiliency after a brain injury is important.

View Article and Find Full Text PDF

Antibiotic prescribing patterns at outpatient clinics in Western and Coastal Kenya.

PLOS Glob Public Health

January 2025

Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford, California, United States of America.

Antimicrobial resistant pathogens are a leading cause of morbidity and mortality worldwide, with overuse and misuse of antimicrobials being key contributors. We aimed to identify factors associated with antibiotic prescriptions among patients presenting to clinics in Kenya. We performed a retrospective, descriptive cohort study of persons presenting to outpatient clinics in Western and Coastal Kenya, including symptoms, physical exams, clinician assessments, laboratory results and prescriptions.

View Article and Find Full Text PDF

Expanded Negative Electrostatic Network-Assisted Seawater Oxidation and High-Salinity Seawater Reutilization.

ACS Nano

January 2025

College of Chemistry Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability.

View Article and Find Full Text PDF

A chromosome-anchored reference assembly for the gray snapper, Lutjanus griseus.

Mol Biol Rep

January 2025

School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA.

Background: The gray snapper (Lutjanus griseus) is a marine reef fish commonly found in coastal and shelf waters of the tropical and subtropical western Atlantic Ocean. In this work, a draft reference genome was developed to support population genomic studies of gray snapper needed to assist with conservation and fisheries management efforts.

Methods And Results: Hybrid assembly of PacBio and Illumina sequencing reads yielded a 1,003,098,032 bp reference across 2039 scaffolds with N50 and L50 values of 1,691,591 bp and 163 scaffolds, respectively.

View Article and Find Full Text PDF

The COVID-19 pandemic and subsequent lockdown measures significantly impacted various sectors, including coastal environments. While restrictions led to temporary improvements in air quality, their effects on coastal waters remained understudy. This research conducted four cruises along the east coast of India during pre- and post-COVID-19 lockdown to assess the water quality changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!