Direct Laser Writing Photonic Crystal Hydrogels with a Supramolecular Sacrificial Scaffold.

Small

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Published: January 2024

Photonic crystal hydrogels (PCHs), with smart stimulus-responsive abilities, have been widely exploited as colorimetric sensors for years. However, the current fabrication technologies are mostly applicable to produce PCHs with simple geometries at the sub-millimeter scale, limiting the introduction of structural design into PCH sensors as well as the accompanied advanced applications. This paper reports the microfabrication of three-dimensional (3D) PCHs with the help of supramolecular agarose PCH as a sacrificial scaffold by two-photon lithography (TPL). The supramolecular PCHs, formulated with SiO colloidal nanoparticles and agarose aqueous solutions, show bright structural color and are degradable upon short-time dimethyl sulfoxide treatment. Leveraging the supramolecular PCH as a sacrificial scaffold, PCHs with precise 3D geometries can be fabricated in an economical and efficient way. This work demonstrates the application of such a strategy in the creation of structural-designed PCH mechanical microsensors that have not been explored before.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202306524DOI Listing

Publication Analysis

Top Keywords

sacrificial scaffold
12
photonic crystal
8
crystal hydrogels
8
pch sacrificial
8
pchs
5
direct laser
4
laser writing
4
writing photonic
4
supramolecular
4
hydrogels supramolecular
4

Similar Publications

Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs.

ACS Biomater Sci Eng

January 2025

Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.

Transplantable engineered organs could one day be used to treat patients suffering from end-stage organ failure. Yet, producing hierarchical vascular networks that sustain the viability and function of cells within human-scale organs remains a major challenge. Sacrificial templating has emerged as a promising biofabrication method that could overcome this challenge.

View Article and Find Full Text PDF

Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering.

Biomater Adv

December 2024

Biomedical Engineering, The University of Melbourne, VIC 3010, Australia; The Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, VIC 3010, Australia. Electronic address:

Sacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores.

View Article and Find Full Text PDF

3D Biofabrication of Microporous Hydrogels for Tissue Engineering.

Adv Healthc Mater

December 2024

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China.

Microporous hydrogels have been utilized in an unprecedented manner in the last few decades, combining materials science, biology, and medicine. Their microporous structure makes them suitable for wide applications, especially as cell carriers in tissue engineering and regenerative medicine. Microporous hydrogel scaffolds provide spatial and platform support for cell growth and proliferation, which can promote cell growth, migration, and differentiation, influencing tissue repair and regeneration.

View Article and Find Full Text PDF

Tailoring the mechanical properties of macro-porous PVA hydrogels for biomedical applications.

J Mech Behav Biomed Mater

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Polyvinyl alcohol (PVA) is a biocompatible biopolymer with superior dimensional and mechanical stability when compared to naturally available biomaterials such as collagen and gelatin. Furthermore, PVA in hydrogel form behaves non-linearly during mechanical loading, generating a response like soft biological tissues. Generally, PVA hydrogels are fabricated using freeze-thaw cycles (FTCs) and changing the number of FTCs gives control over its mechanical properties.

View Article and Find Full Text PDF

Advances in melt electrowriting for cardiovascular applications.

Front Bioeng Biotechnol

September 2024

Technical University of Munich, TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Munich Institute of Biomedical Engineering (MIBE), Munich Institute of Integrated Materials, Energy and Process Engineering (MEP), Munich, Germany.

Article Synopsis
  • Melt electrowriting (MEW) is an advanced biofabrication technique using electric fields to create precise microstructures for soft tissue engineering, particularly in cardiovascular applications.
  • The method allows for innovative designs, such as introducing microvascular networks, developing small-diameter vascular grafts and stents, and creating adaptable cardiac tissues with customizable properties.
  • The overview also highlights ongoing challenges in the field and discusses the latest advancements in biomaterials necessary for fully realizing the potential of MEW technology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!