Background: In immunocompromised populations, such as patients with AIDS and recipients of solid organ and hematopoietic stem cell transplants, BK polyomavirus (BKPyV) can reactivate and cause several diseases, which can lead to death in their severe forms. Unlike hemorrhagic cystitis and BKPyV-associated nephropathy, BKPyV-associated pneumonia is rare, with only seven known cases worldwide. However, the disease can rapidly progress with extremely high mortality.
Case Presentation: Herein, we report two cases of BKPyV-associated pneumonia following hematopoietic stem cell transplantation. Both patients had consistent infectious pneumonia and graft-versus-host disease after stem cell transplantation. The diagnosis of BKPyV-associated pneumonia was confirmed by metagenomic next-generation sequencing and polymerase chain reaction after the sudden worsening of the pulmonary infection signs and symptoms concomitant with renal dysfunction and systemic immune weakening. Both patients eventually died of systemic multi-organ failure caused by severe pneumonia.
Conclusions: Currently, BKPyV reactivation cannot be effectively prevented. Immunocompromised patients must actively manage their primary lung infections, pay close attention to pulmonary signs and imaging changes. Especially during and after steroid pulse therapy or immunosuppressive therapy for graft versus host diseases, BKPyV load in blood/urine needs to be regularly measured, and the immunosuppressive intensity should be adjusted properly after the BKPyV reactivation diagnosis. Clinical trials of new antiviral drugs and therapies for BKPyV are urgently needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494412 | PMC |
http://dx.doi.org/10.1186/s12879-023-08577-2 | DOI Listing |
Elife
January 2025
Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.
Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).
Front Parasitol
April 2024
National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, China.
Background: Malaria is one of the leading causes of morbidity and/or mortality in tropical Africa. The spread and development of resistance to chemical antimalarial drugs and the relatively high cost of the latter are problems associated with malaria control and are reasons to promote the use of plants to meet healthcare needs to treat malaria. The aim of this study was to evaluate antiplasmodial activities of extracts of (Mah quat), which is traditionally used for the treatment of malaria in the western region of Cameroon.
View Article and Find Full Text PDFFront Parasitol
May 2024
Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia.
Further understanding of the molecular mediators of alternative RBC invasion phenotypes in endemic malaria parasites will support malaria blood-stage vaccine or drug development. This study investigated the prevalence of sialic acid (SA)-dependent and SA-independent RBC invasion pathways in endemic parasites from Cameroon and compared the schizont stage transcriptomes in these two groups to uncover the wider repertoire of transcriptional variation associated with the use of alternative RBC invasion pathway phenotypes. A two-color flow cytometry-based invasion-inhibition assay against RBCs treated with neuraminidase, trypsin, and chymotrypsin and deep RNA sequencing of schizont stages harvested in the first replication cycle in culture were employed in this investigation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!