Pharmacological characterization of P2Y receptor subtypes - an update.

Purinergic Signal

Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.

Published: April 2024

P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y, P2Y, and P2Y). The widely expressed P2Y receptors play important roles in physiology and pathophysiology. This review summarizes the use of pharmacological tools to characterize the P2Y receptor subtypes involved in these responses. MRS2500 is a potent and selective antagonist acting at the P2Y receptor. AR-C118925 is useful for the selective antagonism of the P2Y receptor. PSB16133 blocks the P2Y receptor, MRS2578 is an antagonist at the P2Y receptor and NF157 as well as NF340 block the P2Y receptor. ADP-induced platelet aggregation is mediated by P2Y and P2Y receptors. A number of compounds or their active metabolites reduce ADP-induced platelet aggregation by blocking the P2Y receptor. These include the active metabolites of the thienopyridine compounds clopidogrel and prasugrel, the nucleoside analogue ticagrelor and the nucleotide analogue cangrelor. PSB0739 is also a potent antagonist at the P2Y receptor useful for both in vitro and in vivo studies. MRS2211 and MRS2603 inhibit P2Y mediated responses. PPTN is a very potent antagonist at the P2Y receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997570PMC
http://dx.doi.org/10.1007/s11302-023-09963-wDOI Listing

Publication Analysis

Top Keywords

p2y receptor
44
p2y p2y
32
p2y
24
receptor subtypes
12
p2y receptors
12
antagonist p2y
12
receptor
11
adp-induced platelet
8
platelet aggregation
8
active metabolites
8

Similar Publications

For almost two decades, dual antiplatelet therapy (DAPT) has been considered the cornerstone of pharmacological treatment in patients undergoing percutaneous coronary intervention (PCI). DAPT composition and duration have considerably evolved in the last decade moving from fixed treatment durations to tailored strategies based on the individual ischemic and bleeding risks. The increasing awareness of the prognostic relevance of bleeding events after PCI and the need for tailoring DAPT according to the individual bleeding and ischemic risks paved the way to newer DAPT modulation strategies by early aspirin withdrawal which have been shown to decrease bleeding without affecting therapeutic efficacy.

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

CYP2C19 Genotype-Guided Antiplatelet Therapy and Clinical Outcomes in Patients Undergoing a Neurointerventional Procedure.

Clin Transl Sci

January 2025

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

In neurovascular settings, including treatment and prevention of ischemic stroke and prevention of thromboembolic complications after percutaneous neurointerventional procedures, dual antiplatelet therapy with a P2Y12 inhibitor and aspirin is the standard of care. Clopidogrel remains the most commonly prescribed P2Y12 inhibitor for neurovascular indications. However, patients carrying CYP2C19 no-function alleles have diminished capacity for inhibition of platelet reactivity due to reduced formation of clopidogrel's active metabolite.

View Article and Find Full Text PDF

G protein-coupled purinergic P2Y receptors in infectious diseases.

Pharmacol Ther

January 2025

Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:

The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.

View Article and Find Full Text PDF

The combination of clopidogrel and acetylsalicylic acid is the standard treatment for atherosclerotic cardiovascular disease. Nonetheless, there is a pressing need for more potent P2Y receptor inhibitors with quicker onset, especially for early intervention in acute myocardial infarction. Integrating computational modeling, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!