A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Social media emotions annotation guide (SMEmo): Development and initial validity. | LitMetric

The proper measurement of emotion is vital to understanding the relationship between emotional expression in social media and other factors, such as online information sharing. This work develops a standardized annotation scheme for quantifying emotions in social media using recent emotion theory and research. Human annotators assessed both social media posts and their own reactions to the posts' content on scales of 0 to 100 for each of 20 (Study 1) and 23 (Study 2) emotions. For Study 1, we analyzed English-language posts from Twitter (N = 244) and YouTube (N = 50). Associations between emotion ratings and text-based measures (LIWC, VADER, EmoLex, NRC-EIL, Emotionality) demonstrated convergent and discriminant validity. In Study 2, we tested an expanded version of the scheme in-country, in-language, on Polish (N = 3648) and Lithuanian (N = 1934) multimedia Facebook posts. While the correlations were lower than with English, patterns of convergent and discriminant validity with EmoLex and NRC-EIL still held. Coder reliability was strong across samples, with intraclass correlations of .80 or higher for 10 different emotions in Study 1 and 16 different emotions in Study 2. This research improves the measurement of emotions in social media to include more dimensions, multimedia, and context compared to prior schemes.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-023-02195-1DOI Listing

Publication Analysis

Top Keywords

social media
20
emotions study
12
emotions social
8
study emotions
8
emolex nrc-eil
8
convergent discriminant
8
discriminant validity
8
emotions
6
study
6
social
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!