In this work, PtCo bimetallic nanoparticles supported on multi-walled carbon nanotubes (PtCo@MWCNTs) nanohybrid was prepared simply and used for the first time as a novel nanozyme in the colorimetric sensing of L-cysteine (L-Cys) and Cu. Due to its strong enzyme-like catalytic activity, the prepared PtCo@MWCNTs nanohybrid can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to form ox-TMB without HO. Interestingly, the oxidase-like active of PtCo@MWCNTs was effectively suppressed by L-Cys, which could reduce ox-TMB to colorless TMB and lead to a pronounced blue fading, and the absorbance at 652 nm gradually decreased with increasing L-Cys concentration. On the other hand, the nanozyme activity of PtCo@MWCNTs can be recovered due to the complexation between L-Cys and Cu. Therefore, a colorimetric method based on PtCo@MWCNTs nanozyme was established to detect L-Cys and Cu. The results show that the assay platform has simple, rapid, sensitive performance and good selectivity. The detection limits for L-Cys and Cu are 0.041 μM and 0.056 μM, respectively, coupled with the linearities of 0.01 ~ 60.0 μM and 0.05 ~ 80.0 μM. The successful first application of PtCo bimetal-based nanozyme in colorimetric sensing herein opens a new direction for nanozyme and colorimetric analysis, showing great potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s44211-023-00411-8 | DOI Listing |
Molecules
January 2025
Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA.
Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.
View Article and Find Full Text PDFAnal Methods
January 2025
Chongqing Key Laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 400054, P. R. China.
In this work, a peroxidase-like (POD-like) nanozyme of Fe/P-NC was synthesized by doping phosphorus (P) and nitrogen (N) to manipulate iron (Fe) activity centers, which showed catalytic activity and kinetics comparable to those of natural HRP. Based on the efficient POD-like activity of the Fe/P-NC nanozyme and cascaded catalytic reactions with acetylcholinesterase (AChE), we constructed a colorimetric, affordable and sensitive sensing platform to detect organophosphorus pesticides (OPs). In the presence of AChE, the POD-like activity of the prepared Fe/P-NC was suppressed, which weakened the Fe/P-NC-catalyzed oxidation of TMB.
View Article and Find Full Text PDFJ Pharm Anal
October 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO) and Ferrosoferric oxide (FeO) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO or FeO nanoparticles alone.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Fudan University, Shanghai, 200438, China.
Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
The excessive use of organophosphorus pesticides poses a substantial threat to both human health and the environment. Consequently, there is an urgent need for new methods that can quickly degrade and sensitively detect these compounds. A versatile nanozyme based on the biomimetic principle is an effective strategy to solve this problem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!