Reverse translation: the key to increasing the clinical success of immunotherapy?

Genes Immun

Cell Stress & Immunity (CSI) Lab, Department for Cellular & Molecular Medicine (CMM), KU Leuven, Leuven, Belgium.

Published: October 2023

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41435-023-00217-8DOI Listing

Publication Analysis

Top Keywords

reverse translation
4
translation key
4
key increasing
4
increasing clinical
4
clinical success
4
success immunotherapy?
4
reverse
1
key
1
increasing
1
clinical
1

Similar Publications

Highly active antiretroviral therapy has led to a significant increase in the life expectancy of people living with HIV. The trade-off is that HIV-infected patients often suffer from comorbidities that require additional treatment, increasing the risk of Drug-Drug Interactions (DDIs), the clinical relevance of which has often not been determined during registration trials of the drugs involved. Therefore, it is important to identify potential clinically relevant DDIs in order to establish the most appropriate therapeutic approaches.

View Article and Find Full Text PDF

Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.

View Article and Find Full Text PDF

ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in . But the function of in nitrate signaling remains not entirely clear. This study aimed to investigate the role of in nitrate-dependent plant growth and nitrate signaling.

View Article and Find Full Text PDF

Targeting Transcriptional Regulators Affecting Acarbose Biosynthesis in sp. SE50/110 Using CRISPRi Silencing.

Microorganisms

December 2024

Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany.

Acarbose, a pseudo-tetrasaccharide produced by sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation.

View Article and Find Full Text PDF

Cutaneous T-cell lymphoma (CTCL) is a rare T-cell malignancy characterized by inflamed and painful rash-like skin lesions that may affect large portions of the body's surface. Patients experience recurrent infections due to a compromised skin barrier and generalized immunodeficiency resulting from a dominant Th2 immune phenotype of CTCL cells. Given the role of the unfolded protein response (UPR) in normal and malignant T-cell development, we investigated the impact of UPR-inducing drugs on the viability, transcriptional networks, and Th2 phenotype of CTCL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!