Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface. As a result, we achieve highly efficient renal embolization in rabbits. The obtained structural lipiodol droplets exhibit excellent mechanical stability and viscoelasticity, enabling them to closely pack together to efficiently embolize the feeding artery. They also feature good viscoelastic deformation capacities and can travel distally to embolize finer vasculatures down to 40 μm. After 14 days post-embolization, the Janus particle-engineered structural lipiodol droplets achieve efficient embolization without evidence of recanalization or non-target embolization, exhibiting embolization effectiveness superior to the clinical lipiodol-based emulsion. Our strategy provides an alternative approach to large-scale fabricate embolic materials for highly efficient embolization and exhibits good potential for clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495453PMC
http://dx.doi.org/10.1038/s41467-023-41322-6DOI Listing

Publication Analysis

Top Keywords

structural lipiodol
16
lipiodol droplets
16
janus particle-engineered
12
particle-engineered structural
12
embolic materials
12
highly efficient
12
efficient embolization
12
embolization
9
embolization effectiveness
8
janus
4

Similar Publications

Water-Stable Magnetic Lipiodol Micro-Droplets as a Miniaturized Robotic Tool for Drug Delivery.

Adv Mater

November 2024

State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361005, China.

Magnetic microrobots, designed to navigate the complex environments of the human body, show promise for minimally invasive diagnosis and treatment. However, their clinical adoption faces hurdles such as biocompatibility, precise control, and intelligent tracking. Here a novel formulation (referred to water-stable magnetic lipiodol micro-droplets, MLMD), integrating clinically approved lipiodol, gelatin, and superparamagnetic iron oxide nanoparticles (SPION) with a fundamental understanding of the structure-property relationships is presented.

View Article and Find Full Text PDF

Temperature-sensitive nanogels combined with polyphosphate and cisplatin for the enhancement of tumor artery embolization by coagulation activation.

Acta Biomater

September 2024

National Engineering Research Center for Nanomedicine, Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China. Electronic address:

Transcatheter arterial chemoembolization (TACE) is the first-line therapy for hepatocellular carcinoma (HCC). However, the exacerbated hypoxia microenvironment induces tumor relapse and metastasis post-TACE. Here, temperature-sensitive block polymer complexed with polyphosphate-cisplatin (Pt-P@PND) was prepared for the enhancement of tumor artery embolization by coagulation activation.

View Article and Find Full Text PDF

Janus particle-engineered structural lipiodol droplets for arterial embolization.

Nat Commun

September 2023

Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China.

Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface.

View Article and Find Full Text PDF

Objective: Hepatocellular carcinoma (HCC) is a highly prevalent form of liver cancer diagnosed annually in 600,000 people worldwide. A common treatment is transarterial chemoembolization (TACE), which interrupts the blood supply of oxygen and nutrients to the tumor mass. The need for repeat TACE treatments may be assessed in the weeks after therapy with contrast-enhanced ultrasound (CEUS) imaging.

View Article and Find Full Text PDF

A preschool male patient with an extensive cardiac surgical history developed refractory chylothorax after a total cavopulmonary connection. Neither lymphoscintigraphy nor single-photon emission computed tomography (SPECT)/computed tomography could identify the lymphatic system leakage sites. Non-contrast heavy T2-weighted magnetic resonance lymphangiography (MRL) was performed to visualize the lymphatic system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!