As an alternative to octabromodiphenyl ether (octa-BDE), 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) has been widely used in a variety of combustible materials, such as plastics, textiles and furniture. Previous studies have demonstrated the thyroid toxicity of traditional brominated flame retardants for example octa-BDE clearly. Nevertheless, little is known about the thyroid toxicity of alternative novel brominated flame retardants BTBPE. In this study, it was demonstrated that BTBPE in vivo exposure induced FT4 reduction in 2.5, 25 and 250 mg/kg bw treated group and TT4 reduction in 25 mg/kg bw treated group. TG, TPO and NIS are key proteins of thyroid hormone synthesis. The results of Western blot and RT-PCR from thyroid tissue showed decreased protein levels and gene expression levels of TG, TPO and NIS as well as regulatory proteins PAX8 and TTF2. To investigate whether the effect also occurred in humans, anthropogenic Nthy-ori 3-1 cells were selected. Similar results were seen in vitro condition. 2.5 mg/L BTBPE reduced the protein levels of PAX8, TTF1 and TTF2, which in turn inhibited the protein levels of TG and NIS. The results in vitro experiment were consistent with that in vivo, suggesting possible thyrotoxic effects of BTBPE on humans. It was indicated that BTBPE had the potential interference of T4 generation and the study provided more evidence of the effects on endocrine disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2023.114027 | DOI Listing |
Toxicology
December 2024
Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels-Belgium.
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Minderoo Foundation, Perth, WA 6000, Australia.
More than 16,000 chemicals are incorporated into plastics to impart properties such as color, flexibility, and durability. These chemicals may leach from plastics, resulting in widespread human exposure during everyday use. Two plastic-associated chemicals-bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP)-and a class of chemicals-brominated flame retardants [polybrominated diphenyl ethers (PBDEs)]-are credibly linked to adverse health and cognitive impacts.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Environment Research Institute, Shandong University, Qingdao 266237, China.
The consumption of organophosphorus flame retardants (OPFRs) has surged significantly recent years since global banning of brominated flame retardants (BFRs). Industrial activities are an important source of OPFRs, however there are few studies on OPFRs contamination in the indoor and outdoor atmosphere of industrial areas. A study was conducted to analyze contamination of 15 OPFRs individuals in both indoor and outdoor air and PM of living and industrial sites of the petrochemical industrial area (outdoor and indoor sites of living area was LO and LI, outdoor and indoor sites of industrial area was LO and LI).
View Article and Find Full Text PDFEnviron Res
December 2024
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Toxicology
November 2024
School of Chemical Engineering, Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China.
In today's fast-paced technological era, multifaceted technological advancements in our contemporary lifestyle are surging the use of electronic devices, which are significantly piling e-waste and posing environmental concerns. This stock of e-waste is expected to keep rising up to 50 mt year. Formal recycling of such humongous waste is a major challenge, especially in developing nations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!