Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cadmium (Cd) contamination of rice is an urgent ecological and agricultural problem. Strontium (Sr) has been shown to promote plant growth. However, the effect of Sr on rice seedlings under Cd stress is currently unclear. In this work hydroponic experiments were used to assess the impact of Sr on rice seedling growth under Cd stress. The findings demonstrated that foliar application of 0.5 mg L Sr had no discernible impact on the development of rice seedlings. However, Sr significantly alleviated growth inhibition and toxicity in rice seedlings when threatened by Cd. Compared with the Cd treatment (Cd, 2.5 mg L), the root length, shoot height, and whole plant length of rice seedlings in the Cd + Sr treatment (Cd, 2.5 mg L; Sr, 0.5 mg L) increased by 4.96 %, 12.47 % and 9.60 %, respectively. The content of Cd in rice decreased by 23.34 % (roots) and 5.79 % (shoots). Sr lessened the degree of membrane lipid peroxidation damage (lower MDA concentration) among the seedlings of rice under Cd stress by controlling the activities of antioxidant enzymes and GSH content. By changing the expression of antioxidant enzyme-encoding genes and downregulating the heavy metal transporter gene (OsNramp5), Sr reduced accumulation and the detrimental effects of Cd on rice seedlings. Our study provides a new solution to the problem of Cd contamination in rice, which may promote the safe production of rice and benefit human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166948 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!