Highly transient boundary conditions affect mixing of dissolved solutes in groundwater. An example of these transient boundary conditions occurs at the surface water-groundwater interface, where the water level in rivers can change rapidly due to the operation of hydropower plants, leading to a regime known as hydropeaking. Inspired by this phenomenon, this work studies at laboratory scale the effects of fluctuating surface water bodies on solute transport in aquifers. We performed flow-through experiments at two different flow velocities and under steady and transient flow conditions where a conservative tracer was injected in the system and its concentration measured with optical imaging methods. The experimental results were quantitatively interpreted with numerical simulations implementing a non-linear velocity-dependent dispersive transport model. We estimated plume dilution by computing the dilution index and its evolution as well as two key geometrical metrics of the transient plumes: the perimeter and the area. We further investigated reactive mixing and mixing enhancement considering mixing-controlled bimolecular reactions using different critical mixing ratios. In general, highly transient boundary conditions lead to a larger area, perimeter and plume dilution and the results show greater relative enhancement for the scenarios with low groundwater flow velocity. A linear relationship was observed between the evolution of the area and the dilution index of the plumes for the transient flow scenarios investigated. Considering reactive transport and mixing-limited reactions at the surface water-groundwater interface, we identified different dilution and reaction dominated regimes, characterized, respectively, by increasing and decreasing plume entropies at different mixing ratios of the reactants. Furthermore, reactive mixing was enhanced by transient flows leading to a faster degradation of contaminant plumes compared to corresponding steady flow conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2023.104243DOI Listing

Publication Analysis

Top Keywords

reactive mixing
12
highly transient
12
transient flow
12
surface water-groundwater
12
water-groundwater interface
12
transient boundary
12
boundary conditions
12
transient
8
flow conditions
8
plume dilution
8

Similar Publications

Dioxiranes and their heavier chalcogen analogs have long been recognized as pivotal reagents and intermediates in synthetic chemistry, while trioxetanes have largely remained theoretical constructs. In this work, we present the synthesis of neutral, isoelectronic aluminum/chalcogen analogs of dioxiranes and trioxetanes, specifically aluminadiselenirane, aluminaditellurirane, aluminatriselenetane, aluminatritelluretane, and a mixed Se/Te analog of aluminatrichalcogenetane. These compounds, featuring strained AlCh2 and AlCh3 ring (Ch = Se, Te), exhibit significant polarization between the aluminum and chalcogen components.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

Recent advances in the role of gasotransmitters in necroptosis.

Apoptosis

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.

Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is one of the most aggressive types of brain tumor. GBM can modulate glutathione (GSH) levels and regulate cellular redox state, which can explain its high resistance to chemotherapeutic agents. Photodynamic therapy (PDT) is a selective, nontoxic, and minimally invasive treatment approved for many types of cancer.

View Article and Find Full Text PDF

One use of CO as a starting material in organic transformations is in the synthesis of cyclic carbonates and polycarbonates. Due to the low reactivity of CO, this transformation must be carried out in the presence of an efficient catalyst. Although several catalytic systems have been developed in the past decade, reducing the CO pressure at which the reaction is carried out remains one of the main challenges of the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!