A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photoelectrochemical Methods for the Determination of the Flat-Band Potential in Semiconducting Photocatalysts: A Comparison Study. | LitMetric

In addition to the band gap of a semiconducting photocatalyst, its band edges are important because they play a crucial role in the analysis of charge transfer and possible pathways of the photocatalytic reaction. The Mott-Schottky method using electrochemical impedance spectroscopy is the most common experimental technique for the determination of the electron potential in photocatalysts. This method is well suited for large crystals, but in the case of nanocatalysts, when the thickness of the charged layer is comparable with the size of the nanocrystals, the capacitance of the Helmholtz layer can substantially affect the measured potential. A contact between the electrolyte and the substrate, used for deposition of the photocatalyst, also affects the impedance. Application of other photoelectrochemical methods may help to avoid concerns in the interpretation of impedance data and improve the reliability of measurements. In this study, we have successfully prepared five visible-light active photocatalysts (i.e., N-doped TiO, WO, BiWO, CoO, and g-CN) and measured their flat-band potentials using four (photo)electrochemical methods. The potentials are compared for all methods and discussed regarding the type of semiconducting material and its properties. The effect of methanol as a sacrificial agent for the enhanced transfer of charge carriers is studied and discussed for each method.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c01158DOI Listing

Publication Analysis

Top Keywords

photoelectrochemical methods
12
methods determination
4
determination flat-band
4
flat-band potential
4
potential semiconducting
4
semiconducting photocatalysts
4
photocatalysts comparison
4
comparison study
4
study addition
4
addition band
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!