A novel berberine derivative targeting adipocyte differentiation to alleviate TNF-α-induced inflammatory effects and insulin resistance in OP9 cells.

Biomed Pharmacother

Department of Oral Pharmacology, College of Dentistry, Wonkwang University, Iksan, the Republic of Korea. Electronic address:

Published: November 2023

Inflammation and insulin resistance play important roles in the development and progression of type 2 diabetes mellitus. The enhancement of adipocyte differentiation can improve insulin sensitivity by increasing glucose uptake, improving insulin signaling, and reducing inflammation. However, only a few adipogenic agents have shown clinical success in patients with type 2 diabetes mellitus. The therapeutic potential of berberine in type 2 diabetes mellitus was confirmed in terms of the target gene-disease relationship using a network pharmacology database prior to synthesizing the derivatives. Novel berberine derivatives were synthesized, and compound 3b promoted adipocyte differentiation and improvement of insulin resistance in OP9 cells. Compound 3b significantly increased the expression of key adipogenic markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein β (C/EBPβ) and promoted lipid accumulation without cytotoxicity. Furthermore, tumor necrosis factor α (TNF-α)-induced inhibition of adipocyte differentiation and the elevation of inflammatory responses were reversed by compound 3b. Subsequently glucose uptake level through insulin sensitivity improvement was enhanced by compound 3b. Mechanistically, TNF-α activated mitogen-activated protein kinases (MAPKs): ERK, JNK, and p38, whereas compound 3b attenuated phosphorylation of three MAPKs. Finally, in silico molecular docking suggested the possible binding sites of compound 3b on PPARγ. Collectively, the adipogenic and glucose uptake effects of compound 3b were associated with its anti-inflammatory effects and reduced phosphorylation of MAPKs. These findings suggest that the berberine derivative compound 3b may be a potent antidiabetic agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115433DOI Listing

Publication Analysis

Top Keywords

adipocyte differentiation
16
insulin resistance
12
type diabetes
12
diabetes mellitus
12
glucose uptake
12
novel berberine
8
berberine derivative
8
resistance op9
8
op9 cells
8
insulin sensitivity
8

Similar Publications

Obesity and type 2 diabetes (T2D) are strongly linked to abnormal adipocyte metabolism and adipose tissue (AT) dysfunction. However, existing adipose tissue models have limitations, particularly in the stable culture of fat cells that maintain physiologically relevant phenotypes, hindering a deeper understanding of adipocyte biology and the molecular mechanisms behind differentiation. Current model systems fail to fully replicate in vivo metabolism, posing challenges in adipose research.

View Article and Find Full Text PDF

Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.

Methods: Gene expression profiles of various cell subsets were compared by mining a public database.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapy due to their self-renewal capability, multilineage differentiation potential, and immunomodulatory effects. The molecular characteristics of MSCs are influenced by their location. Recently, epidural fat (EF) and EF-derived MSCs (EF-MSCs) have garnered attention due to their potential benefits to the spinal microenvironment and their high expression of neural SC markers.

View Article and Find Full Text PDF

Bisphenol A-Induced Cancer-Associated Adipocytes Promotes Breast Carcinogenesis Via CXCL12/AKT Signaling.

Mol Cell Endocrinol

January 2025

Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.

View Article and Find Full Text PDF

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!