A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental and computational approach on the development of a new Green corrosion inhibitor formulation for N80 steel in 20% formic acid. | LitMetric

AI Article Synopsis

  • Organic acids help dissolve scale in oil and gas production, but they can corrode metal surfaces, leading to significant industry challenges.
  • Recent environmental regulations have spurred research into eco-friendly corrosion inhibitors, like a new compound called IZ, which is tested for effectiveness against corrosion in acidic conditions.
  • Experimental results show that IZ provides exceptional corrosion protection for N80 steel, achieving up to 99.54% inhibition efficiency, and its effectiveness increases further when paired with another agent (KI).

Article Abstract

Organic acids are employed as scale dissolvers in the oil & gas industry during production to stimulate oil recovery by pumping in the formations. Corrosion of metallic surfaces in organic acid solutions poses a significant issue in the oil and gas sector. In recent years, considering the stringent environmental regulations, there has been a growing research interest in environmentally safe inhibitors. This paper explores the synthesis of 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (IZ) and its first-time application for corrosion mitigation of N80 steel in 20% formic acid. A detailed experimental study involving gravimetric, electrochemical, and surface analytical techniques is reported herein. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) analyses suggest a rise of impedance with IZ and a mixed-type inhibition behavior, respectively. The inhibition efficiency (IE) is 99.54% at 200 mg/L at 308 K, reaching 99.4% at 363 K with the introduction of KI as a synergistic agent. Computational studies revealed that the inhibitor IZ gets protonated in the experimental environment. The protonated form shows a tendency to receive electrons from the metal surface and shows a greater energy of adsorption compared to that of the neutral form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.08.190DOI Listing

Publication Analysis

Top Keywords

n80 steel
8
steel 20%
8
20% formic
8
formic acid
8
oil gas
8
experimental computational
4
computational approach
4
approach development
4
development green
4
green corrosion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!