Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hygroscopic salt-based composite sorbents are considered ideal candidates for solar-driven atmospheric water harvesting. The primary challenge for the sorbents lies in exposing more hygroscopically active sites to the surrounding air while preventing salt leakage. Herein, a hierarchically structured scaffold is constructed by integrating cellulose nanofiber and lithium chloride (LiCl) as building blocks through 3D printing combined with freeze-drying. The milli/micrometer multiscale pores can effectively confine LiCl and simultaneously provide a more exposed active area for water sorption and release, accelerating both water sorption and evaporation kinetics of the 3D printed structure. Compared to a conventional freeze-dried aerogel, the 3D printed scaffold exhibits a water sorption rate that is increased 1.6-fold, along with a more than 2.4-fold greater water release rate. An array of bilayer scaffolds is demonstrated, which can produce 0.63 g g day of water outdoors under natural sunlight. This article provides a sustainable strategy for collecting freshwater from the atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202306653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!