A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D Printed Cellulose Nanofiber Aerogel Scaffold with Hierarchical Porous Structures for Fast Solar-Driven Atmospheric Water Harvesting. | LitMetric

Hygroscopic salt-based composite sorbents are considered ideal candidates for solar-driven atmospheric water harvesting. The primary challenge for the sorbents lies in exposing more hygroscopically active sites to the surrounding air while preventing salt leakage. Herein, a hierarchically structured scaffold is constructed by integrating cellulose nanofiber and lithium chloride (LiCl) as building blocks through 3D printing combined with freeze-drying. The milli/micrometer multiscale pores can effectively confine LiCl and simultaneously provide a more exposed active area for water sorption and release, accelerating both water sorption and evaporation kinetics of the 3D printed structure. Compared to a conventional freeze-dried aerogel, the 3D printed scaffold exhibits a water sorption rate that is increased 1.6-fold, along with a more than 2.4-fold greater water release rate. An array of bilayer scaffolds is demonstrated, which can produce 0.63 g g day of water outdoors under natural sunlight. This article provides a sustainable strategy for collecting freshwater from the atmosphere.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202306653DOI Listing

Publication Analysis

Top Keywords

water sorption
12
cellulose nanofiber
8
solar-driven atmospheric
8
atmospheric water
8
water harvesting
8
water
7
printed cellulose
4
nanofiber aerogel
4
aerogel scaffold
4
scaffold hierarchical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!