Low-cost and portable electromagnetic (EM) stroke diagnostic systems are of great interest due to the increasing demand for early on-site detection or long-term bedside monitoring of stroke patients. Biosensor antennas serve as crucial hardware components for EM diagnostic systems. This article presents a detect capability enhanced biosensor antenna with a planar and compact configuration for portable EM stroke detection systems, overcoming the problem of limited detection capability in existing designs for this application. The proposed antenna is developed based on multiple dipoles, exhibiting multi-mode resonances and complementary interaction. In the frequency domain, the simulated and measured results with the presence of head phantoms show that this compact planar antenna achieves improved performance in both impedance bandwidth and near-field radiation inside the head tissues, which all contribute to enhancing its stroke detection capability in radar-based EM diagnosis. An array of 12 elements is numerically and experimentally tested in a lab-setting EM stroke diagnostic system to validate the detection capability of the proposed antenna. The reconstructed 2-D images inside the head demonstrate successful detection of different stroke-affected areas, even as small as 3 mm in radius, significantly smaller than those of reported relevant works under the same validation setting, confirming the enhanced detection capability of the proposed antenna.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2023.3313732DOI Listing

Publication Analysis

Top Keywords

detection capability
20
stroke diagnostic
12
diagnostic systems
12
proposed antenna
12
detection
8
capability enhanced
8
enhanced biosensor
8
biosensor antenna
8
portable electromagnetic
8
electromagnetic stroke
8

Similar Publications

Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.

View Article and Find Full Text PDF

Background: A considerable proportion (21%) of patients with common variable immunodeficiency (CVID) suffers from depression. These subjects are characterized by reduced naïve T cells and a premature T cell senescence similar to that of patients with major depressive disorder (MDD). It is known that T cells are essential for limbic system development/function.

View Article and Find Full Text PDF

Pumps in Water Distribution Networks (WDNs) adequately provide effective pressure where low elevation or high head losses are detected within the system. One of the most effective strategies to ensure economic sustainability is Pump Scheduling (PS), assuring the optimization of pump management and enabling significant energy cost saving. Meta-heuristic algorithms can be applied to Pump Scheduling, given their ability to provide reliable global solutions, further complemented by limited computational efforts.

View Article and Find Full Text PDF

Pulse approach: a physics-guided machine learning model for thermal analysis in laser-based powder bed fusion of metals.

Prog Addit Manuf

July 2024

Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

Fast and accurate representation of heat transfer in laser powder-bed fusion of metals (PBF-LB/M) is essential for thermo-mechanical analyses. As an example, it benefits the detection of thermal hotspots at the design stage. While traditional physics-based numerical approaches such as the finite element (FE) method are applicable to a wide variety of problems, they are computationally too expensive for PBF-LB/M due to the space- and time-discretization requirements.

View Article and Find Full Text PDF

A genetically encoded fluorescent biosensor for sensitive detection of cellular c-di-GMP levels in .

Front Chem

January 2025

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China.

Cyclic di-guanosine monophosphate (c-di-GMP) acts as a second messenger regulating bacterial behaviors including cell cycling, biofilm formation, adhesion, and virulence. Monitoring c-di-GMP levels is crucial for understanding these processes and designing inhibitors to combat biofilm-related antibiotic resistance. Here, we developed a genetically encoded biosensor, cdiGEBS, based on the transcriptional activity of the c-di-GMP-responsive transcription factor MrkH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!