The integration of renewable sources (RSs) and the widespread deployment of electric vehicles (EVs) has transitioned from a luxury to a necessity in modern power systems. This results from the sharp increase in electric power demand and public awareness of switching to green energy. However, in addition to load fluctuations and changes in system parameters, these RSs and EVs negatively impact the load frequency (LF). This work presents a LF control for a modern multi-area power system incorporating photovoltaic (PV) and EV chargers. The proposed controller primarily utilizes EV chargers within modern power systems. This approach offers the advantage of using the already present components instead of introducing new ones. The proposed controller comprises the ecological optimization approach (ECO) and the integral controller (I). Both of these components are designed for autonomous vehicle-to-grid (V2G) devices. The proposed control technique is applied to a three-area power system, where the V2G scheme is located in Area-1. Variations in the load, PV power generated, and system parameters are considered to evaluate the effectiveness of the proposed (I+ECO+V2G) controller for controlling the LF. To assess the performance of the proposed I+ECO+V2G system, a comparative analysis is conducted to compare its performance with both the I+ECO system and the standard I-controller. The simulation findings demonstrate that implementing the I+ECO and the proposed I+ECO+V2G strategies results in enhanced system stability and decreased LF fluctuations compared to the conventional I-control approach. Furthermore, while comparing the I+ECO control technique to the suggested control strategy I+ECO+V2G, it was seen that the latter reaches steady state values more quickly. The results validate the robustness and effectiveness of the proposed controller in mitigating the impacts of load disturbances, uncertainties, and nonlinearities within the system. These simulations were performed using MATLAB/SIMULINK. To validate the outcomes of the simulation results, an experimental setup consisting of a real-time dSPACE DS1103 connected to another PC via QUARC pid_e data acquisition card was used. The experimental findings have substantiated the accuracy of the simulation findings about the superiority of the I+ECO+V2G methodology compared to both the I+ECO and I-control methodologies concerning system performance and LF control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10495024 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0291463 | PLOS |
iScience
January 2025
International Institute for Applied Systems Analysis, Laxenburg, Lower Austria, Austria.
Cost reductions are essential for accelerating clean technology deployment. Because multiple factors influence costs, traditional one-factor learning models, solely relying on cumulative installed capacity as an explanatory variable, may oversimplify cost dynamics. In this study, we disentangle learning and economies of scale effects at unit and project levels and introduce a knowledge gap concept to quantify rapid technological change's impact on costs.
View Article and Find Full Text PDFiScience
January 2025
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.
View Article and Find Full Text PDFFront Pediatr
January 2025
Department of Anesthesiology, University of Wisconsin Foundation, Madison, WI, United States.
Global health prioritizes improving health and achieving equity in health for all people worldwide. It encompasses a wide range of efforts, including disease prevention and treatment, health promotion, healthcare delivery, and addressing health disparities across borders. Short-term medical and surgical missions often contribute to the global health landscape, especially in low and lower-middle income countries.
View Article and Find Full Text PDFFront Chem
January 2025
Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.
Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.
View Article and Find Full Text PDFLandsc Ecol
January 2025
Department of Geography, McGill University, Montreal, QC Canada.
Context: There are urgent calls to transition society to more sustainable trajectories, at scales ranging from local to global. Landscape sustainability (LS), or the capacity for landscapes to provide equitable access to ecosystem services essential for human wellbeing for both current and future generations, provides an operational approach to monitor these transitions. However, the complexity of landscapes complicates how and what to consider when assessing LS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!