The study of protein folding mechanism is a challenge in molecular biology, which is of great significance for revealing the movement rules of biological macromolecules, understanding the pathogenic mechanism of folding diseases, and designing protein engineering materials. Based on the hypothesis that the conformational sampling trajectory contain the information of folding pathway, we propose a protein folding pathway prediction algorithm named Pathfinder. Firstly, Pathfinder performs large-scale sampling of the conformational space and clusters the decoys obtained in the sampling. The heterogeneous conformations obtained by clustering are named seed states. Then, a resampling algorithm that is not constrained by the local energy basin is designed to obtain the transition probabilities of seed states. Finally, protein folding pathways are inferred from the maximum transition probabilities of seed states. The proposed Pathfinder is tested on our developed test set (34 proteins). For 11 widely studied proteins, we correctly predicted their folding pathways and specifically analyzed 5 of them. For 13 proteins, we predicted their folding pathways to be further verified by biological experiments. For 6 proteins, we analyzed the reasons for the low prediction accuracy. For the other 4 proteins without biological experiment results, potential folding pathways were predicted to provide new insights into protein folding mechanism. The results reveal that structural analogs may have different folding pathways to express different biological functions, homologous proteins may contain common folding pathways, and α-helices may be more prone to early protein folding than β-strands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10513300PMC
http://dx.doi.org/10.1371/journal.pcbi.1011438DOI Listing

Publication Analysis

Top Keywords

protein folding
24
folding pathways
24
folding
13
folding pathway
12
seed states
12
pathway prediction
8
conformational sampling
8
folding mechanism
8
transition probabilities
8
probabilities seed
8

Similar Publications

A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.

View Article and Find Full Text PDF

A Coarse-Grained Simulation Approach for Protein Molecular Conformation Dynamics.

J Phys Chem A

January 2025

Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.

Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.

View Article and Find Full Text PDF

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.

View Article and Find Full Text PDF

Comprehensive analysis of heat shock protein 110, 90, 70, 60 families and tumor immune microenvironment characterization in clear cell renal cell carcinoma.

Sci Rep

January 2025

Chongqing Health Center for Women and Children /Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.

Heat shock proteins (HSPs) are a kind of molecular chaperone that helps protein folding, which is closely related to cancer. However, the association between HSPs and clear cell renal clear cell carcinoma (ccRCC) is uncertain. We explored the prognostic value of HSP110, HSP90, HSP70 and HSP60 families in ccRCC and their role in tumor immune microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!