We report three niobium-based initiators for the catalytic ring-opening polymerization (ROP) of ε-caprolactone, exhibiting good activity and molecular weight control. In particular, we have prepared on the gram-scale and fully characterized a monometallic cationic alkoxo-Nb(V) ε-caprolactone adduct representing, to the best of our knowledge, an unprecedented example of a metal complex with an intact lactone monomer and a functional ROP-initiating group simultaneously coordinated at the metal center. At 80 °C, all three systems initiate the immortal solution-state ROP of ε-caprolactone via a coordination-insertion mechanism, which has been confirmed through experimental studies, and is supported by computational data. Natural bond orbital calculations further indicate that polymerization may necessitate isomerization about the metal center between the alkoxide chain and the coordinated monomer. The observations made in this work are expected to inform mechanistic understanding both of amine tris(phenolate)-supported metal alkoxide ROP initiators, including various highly stereoselective systems for the polymerization of lactides and of coordination-insertion-type ROP protocols more broadly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523432PMC
http://dx.doi.org/10.1021/acs.inorgchem.3c02491DOI Listing

Publication Analysis

Top Keywords

ring-opening polymerization
8
rop ε-caprolactone
8
metal center
8
coordination ε-caprolactone
4
ε-caprolactone cationic
4
cationic niobiumv
4
niobiumv alkoxide
4
alkoxide complex
4
complex fundamental
4
fundamental insight
4

Similar Publications

High-Rate 4.2 V Solid-State Potassium Batteries by In Situ Polymerized Epoxide Ether Electrolyte.

Nano Lett

January 2025

College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.

Article Synopsis
  • Solid-state metallic potassium batteries (SSMPBs) are gaining attention as alternatives to lithium batteries, but face challenges like low ionic conductivity and high interfacial resistance.
  • Researchers achieved improved performance by using in situ ring-opening polymerization with a plasticizer and catalyst, resulting in short-chain polyether electrolytes that significantly enhance ionic conductivity.
  • The developed SSMPBs show a high discharge capacity of 69 mAh/g at 100 mA/g and 88.8% capacity retention after 100 cycles, outperforming previous SSMPB studies.
View Article and Find Full Text PDF

Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes.

View Article and Find Full Text PDF

Tuning steric hindrance of cyclic ether electrolytes enables high-voltage lithium metal batteries.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China. Electronic address:

Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether.

View Article and Find Full Text PDF

Synthetic vinyl polymers have long been recognized for their potential to be utilized in drug delivery, tissue engineering, and other biomedical applications. The synthetic control that chemists have over their structure and properties is unmatched, allowing vinyl polymer-based materials to be precisely engineered for a range of therapeutic applications. Yet, their lack of biodegradability compromises the biocompatibility of vinyl polymers and has held back their translation into clinically used treatments for disease thus far.

View Article and Find Full Text PDF

The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!