Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Broflanilide is widely used to control pests and has attracted attention due to its adverse effects on aquatic organisms. Our previous study showed that broflanilide has a negative impact on the central nervous system (CNS) at lethal dosages; however, its neural effects under practical situations and the underlying mechanisms remain unknown. To elucidate how broflanilide affects the CNS, we exposed zebrafish larvae to broflanilide at 16.9 and 88.0 μg/L (the environmentally relevant concentrations) for 120 h. Zebrafish locomotion was significantly disturbed at 88.0 μg/L, with a decreased moving distance and velocity accompanied by an inhibited neurotransmitter level. neuroimaging analysis indicated that the nerves of zebrafish larvae, including the axons, myelin sheaths, and neurons, were impaired. The number of neurons was significantly reduced after exposure, with an impaired morphological structure. These changes were accompanied by the abnormal transcription of genes involved in early CNS development. In addition, an increased total number of microglia and an elevated proportion of amoeboid microglia were observed after 88.0 μg/L broflanilide exposure, pointing out to an upstream role of microglia activation in mediating broflanilide neurotoxicity. Meanwhile, increased inflammatory cytokine levels and brain neutrophil numbers were observed, implicating significant inflammatory response and immune toxicity. Our findings indicate that broflanilide interferes with microglia-neuron regulation and induces neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c03626 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!