Background: Allyl isothiocyanate (AITC) is an excellent active phytoconstituent recently revealed for cancer treatment. The strategic prominence of this study was to synthesize and characterize AITC-embedded tripolyphosphate-modified chitosan nanoparticles (AITC@CS-TPP-NPs) by ionic gelation.
Method: Chitosan is recycled as a polymer to fabricate AITC@CS-TPP-NPs; the fabricated nanoparticles (NPs) are then characterized using FT-IR spectroscopy, DSC, XRD, zeta potential, size analysis, SEM, EDX, entrapment efficiency, in vitro drug release study, and in vitro cytotoxicity activity against MCF-7 to explore the effectiveness and strength.
Results: As a result, developed AITC@CS-TPP-NPs demonstrates good stability with a zeta potential of 35.83 mV and 90.14% of drug release. The anticancer potential of AITC@CS-TPP-NPs shows the improved cytotoxicity activity of AITC due to the surface modification of CS using TPP. Hence, the cytotoxicity of AITC@CS-TPP-NPs was tested in vitro against a human breast cancer cell line (MCF-7) and found to be considerable.
Conclusion: The AITC@CS-TPP-NPs were effectively synthesized and have significant benefits, including being easy to prepare, stable, and affordable with wide use in human breast cancer against cell line (MCF-7).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12282-023-01501-1 | DOI Listing |
Breast Cancer
January 2025
Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA.
Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan.
Mol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!