A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of cottonseed oil on lipids/lipoproteins: a systematic review and plasma cholesterol predictive equations estimations. | LitMetric

Context: Cottonseed oil (CSO) is higher in polyunsaturated fatty acids (PUFA) and saturated fatty acids (SFAs) than many liquid plant oils.

Objectives: To conduct a systematic review of randomized controlled trials (RCTs) examining effects of CSO on markers of lipid metabolism and evaluate lipid and lipoprotein effects of incorporating CSO into a healthy dietary pattern using regression equations.

Data Sources: A systematic search was conducted for RCTs comparing CSO with a non-CSO comparator in any population.

Data Analyses: The Katan regression equation was used to predict lipid/lipoprotein changes when incorporating CSO into a US-style healthy eating pattern at 25 to 100% of the total oil allowance (ie, 27 g/2000 kcal) compared with average American intake (NHANES 2017 to 2020 pre-COVID pandemic).

Results: In total, 3 eligible publications (n = 2 trials), with 58 participants that provided 44% and 30% of total energy as CSO, were included. Fasting low-density lipoprotein cholesterol (LDL-C; ≈ -7.7 mg/dL) and triglycerides (≈ -7.5 mg/dL) were lower after 5 days of a CSO-enriched diet vs olive oil (OO). In a 56-day trial, CSO lowered total cholesterol (TC; ≈ -14.8 mg/dL), LDL-C (≈ -14.0 mg/dL), and non-high-density lipoprotein cholesterol (≈ -14.2 mg/dL) vs OO. Postprandially, angiopoietin-like protein-3, -4, and -8 concentrations decreased with CSO and increased with OO intake. Compared with average American intake, a healthy eating pattern with 27 g of CSO was estimated to lower TC (-8.1 mg/dL) and LDL-C (-7.3 mg/dL) levels, with minimal reduction in high-density lipoprotein cholesterol (-1.1 mg/dL). Compared with the healthy eating pattern, incorporating 27 g of CSO was predicted to increase TC and LDL-C levels by 2.4 mg/dL.

Conclusion: Limited high-quality research suggests CSO may improve lipid/lipoprotein levels compared with OO. Cholesterol predictive equations suggest CSO can be incorporated into a healthy dietary pattern without significantly affecting lipids/lipoproteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233854PMC
http://dx.doi.org/10.1093/nutrit/nuad109DOI Listing

Publication Analysis

Top Keywords

cso
12
healthy eating
12
eating pattern
12
lipoprotein cholesterol
12
cottonseed oil
8
systematic review
8
cholesterol predictive
8
predictive equations
8
fatty acids
8
incorporating cso
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!