Understanding the environmental transformation and fate of graphene oxide (GO) is critical to estimate its engineering applications and ecological risks. While there have been numerous investigations on the physicochemical stability of GO in prolonged air-exposed solution, the potential generation of reactive radicals and their impact on the structure of GO remain unexplored. In this study, using liquid-PeakForce-mode atomic force microscopy and quadrupole time-of-flight mass spectroscopy, we report that prolonged exposure of GO to the solution leads to the generation of nanopores in the 2D network and may even cause the disintegration of its bulk structure into fragment molecules. These fragments can assemble themselves into films with the same height as the GO at the interface. Further mediated electrochemical analysis supports that the electron-donating active components of GO facilitate the conversion of O to O radicals on the GO surface, which are subsequently converted to HO, ultimately leading to the formation of OH. We experimentally confirmed that attacks from OH radicals can break down the C-C bond network of GO, resulting in the degradation of GO into small fragment molecules. Our findings suggest that GO can exhibit chemical instability when released into aqueous solutions for prolonged periods of time, undergoing transformation into fragment molecules through self-generated OH radicals. This finding not only sheds light on the distinctive fate of GO-based nanomaterials but also offers a guideline for their engineering applications as advanced materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c05788DOI Listing

Publication Analysis

Top Keywords

fragment molecules
12
graphene oxide
8
engineering applications
8
long-term exposure
4
exposure graphene
4
oxide suspension
4
suspension air
4
air leading
4
leading spontaneous
4
spontaneous radical-driven
4

Similar Publications

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability.

View Article and Find Full Text PDF

Skeletal Editing through Cycloaddition and Subsequent Cycloreversion Reactions.

Acc Chem Res

January 2025

Organisch-Chemisches Institut, Universität Münster, Corrensstrasse 40, 48149 Münster, Germany.

ConspectusSkeletal editing, which involves adding, deleting, or substituting single or multiple atoms within ring systems, has emerged as a transformative approach in modern synthetic chemistry. This innovative strategy addresses the ever-present demand for developing new drugs and advanced materials by enabling precise modifications of molecular frameworks without disrupting essential functional complexities. Ideally performed at late stages of synthesis, skeletal editing minimizes the need for the cost- and labor-intensive processes often associated with synthesis, thus accelerating the discovery and optimization of complex molecular architectures.

View Article and Find Full Text PDF

The labile tautomerism of -unsubstituted 5-acyl-4-pyridones, which exist in the form of 4-pyridone or 4-hydroxypyridine depending on the solvent, has been demonstrated. This equilibrium determines the reactivity of pyridones and their ability to undergo substitution reactions of the OH group. A regioselective and convenient method for the construction of functionalized pyrazolo[4,3-]pyridines (30-93%) based on the intramolecular amination reaction of 4-pyridones with hydrazines has been developed.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!