Bats are reservoirs of various coronaviruses that can jump between bat species or other mammalian hosts, including humans. This article explores coronavirus infection in three bat species (, and ) of the family Molossidae from Argentina using whole viral metagenome analysis. Fecal samples of 47 bats from three semiurban or highly urbanized areas of the province of Santa Fe were investigated. After viral particle enrichment, total RNA was sequenced using the Illumina NextSeq 550 instrument; the reads were assembled into contigs and taxonomically and phylogenetically analyzed. Three novel complete Alphacoronavirus (AlphaCoV) genomes (Tb1-3) and two partial sequences were identified in (Tb4-5), and an additional four partial sequences were identified in (Mm1-4). Phylogenomic analysis showed that the novel AlphaCoV clustered in two different lineages distinct from the 15 officially recognized AlphaCoV subgenera. Tb2 and Tb3 isolates appeared to be variants of the same virus, probably involved in a persistent infectious cycle within the colony. Using recombination analysis, we detected a statistically significant event in Spike gene, which was reinforced by phylogenetic tree incongruence analysis, involving novel Tb1 and AlphaCoVs identified in (family Vespertilionidae) from the U.S. The putative recombinant region is in the S1 subdomain of the Spike gene, encompassing the potential receptor-binding domain of AlphaCoVs. This study reports the first AlphaCoV genomes in molossids from the Americas and provides new insights into recombination as an important mode of evolution of coronaviruses involved in cross-species transmission. IMPORTANCE This study generated three novel complete AlphaCoV genomes (Tb1, Tb2, and Tb3 isolates) identified in individuals of from Argentina, which showed two different evolutionary patterns and are the first to be reported in the family Molossidae in the Americas. The novel Tb1 isolate was found to be involved in a putative recombination event with alphacoronaviruses identified in bats of the genus from the U.S., whereas isolates Tb2 and Tb3 were found in different collection seasons and might be involved in persistent viral infections in the bat colony. These findings contribute to our knowledge of the global diversity of bat coronaviruses in poorly studied species and highlight the different evolutionary aspects of AlphaCoVs circulating in bat populations in Argentina.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581097PMC
http://dx.doi.org/10.1128/spectrum.02047-23DOI Listing

Publication Analysis

Top Keywords

alphacov genomes
12
tb2 tb3
12
molossidae argentina
8
insights recombination
8
cross-species transmission
8
bat species
8
family molossidae
8
three novel
8
novel complete
8
partial sequences
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!