Background: Transplantation of stem cells/scaffold is an efficient approach for treating tissue injury including full-thickness skin defects. However, the application of stem cells is limited by preservation issues, ethical restriction, low viability, and immune rejection . The mesenchymal stem cell conditioned medium is abundant in bioactive functional factors, making it a viable alternative to living cells in regeneration medicine.

Methods: Nasal mucosa-derived ecto-mesenchymal stem cells (EMSCs) of rats were identified and grown in suspension sphere-forming 3D culture. The EMSCs-conditioned medium (EMSCs-CM) was collected, lyophilized, and analyzed for its bioactive components. Next, fibrinogen and chitosan were further mixed and cross-linked with the lyophilized powder to obtain functional skin patches. Their capacity to gradually release bioactive substances and biocompatibility with epidermal cells were assessed . Finally, a full-thickness skin defect model was established to evaluate the therapeutic efficacy of the skin patch.

Results: The EMSCs-CM contains abundant bioactive proteins including VEGF, KGF, EGF, bFGF, SHH, IL-10, and fibronectin. The bioactive functional composite skin patch containing EMSCs-CM lyophilized powder showed the network-like microstructure could continuously release the bioactive proteins, and possessed ideal biocompatibility with rat epidermal cells . Transplantation of the composite skin patch could expedite the healing of the full-thickness skin defect by promoting endogenous epidermal stem cell proliferation and skin appendage regeneration in rats.

Conclusion: In summary, the bioactive functional composite skin patch containing EMSCs-CM lyophilized powder can effectively accelerate skin repair, which has promising application prospects in the treatment of skin defects.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574888X19666230908142426DOI Listing

Publication Analysis

Top Keywords

composite skin
16
skin patch
16
bioactive functional
16
full-thickness skin
16
skin
13
skin defects
12
lyophilized powder
12
bioactive
8
functional factors
8
stem cells
8

Similar Publications

Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States.

This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide--glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition.

View Article and Find Full Text PDF

Background: Rodent models have been widely used to investigate skin development, but do not account for significant differences in composition compared to human skin. On the other hand, two-dimensional and three-dimensional engineered skin models still lack the complex features of human skin such as appendages and pigmentation. Recently, hair follicle containing skin organoids (SKOs) with a stratified epidermis, and dermis layer have been generated as floating spheres from human-induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

Generation and Characterization of a New Aging Skin Human Dermal Extracellular Matrix Scaffold.

Methods Mol Biol

January 2025

Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.

In vitro skin aging models represent a valuable tool for the study of age-related pathologies and potential treatments. However, the currently available models do not adequately represent the complex microenvironment of the dermis since they generally focus on cutaneous cellular senescence, rather than the full range of factors that contribute to the aging process, such as structural and compositional alteration of the dermal extracellular matrix. The following protocol describes the extraction and characterization of human adult extracellular matrix scaffolds for use in in vitro aging models.

View Article and Find Full Text PDF

Skin cancer is considered globally as the most fatal disease. Most likely all the patients who received wrong diagnosis and low-quality treatment die early. Though if it is detected in the early stages the patient has fairly good chance and the aforementioned diseases can be cured.

View Article and Find Full Text PDF

Y-shaped venous anastomosis combined with free flap for the treatment of complex craniofacial trauma.

J Stomatol Oral Maxillofac Surg

January 2025

Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, 563000 China; The Collaborative Innovation Center of Tissue, Damage Repair and Regeneration Medicine of Zunyi Medical University, 563000 China. Electronic address:

Background: Complex craniofacial trauma is defined as those traumatic injuries that are not responding to initial treatment and may involve chronic infection, tissue exposure, and soft tissue contusions. Typical reconstruction using a Y-shaped microvascular venous anastomotic free flap is labor intensive. Although free flap grafts have been used in many applications, their use for combined microvascular anastomotic therapy remains an unexplored but attractive possibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!