Trichloroethylene is a typical organic contaminant that has widely existed in industry sites and groundwater. Biochar-supported zero-valent iron material has been used to remove trichloroethylene in groundwater; however, it could affect the microbial communities in aquifer soil, leading to changes in the environmental behavior of trichloroethylene. In this study, biochar was prepared under oxygen-limited conditions and modified by NaOH and HNO agents. Then, a modified biochar-supported zero-valent iron composite (BC composites) was synthesized using ball milling technology. The effects of BC composites on the removal of trichloroethylene and the responses of the microbial community were investigated under the condition of simulated aquifer soil. The results showed that the specific surface areas of BC composites were increased after the modification with NaOH. The highest removal rate of trichloroethylene was observed in the BC_2 treatment, up to 90.01%. Except in the BC_1 treatment, the diversity and abundance of soil microorganisms were increased, and the microbial community structure was changed after the addition of different BC composites, in which , and might have been the potential degrading bacteria of trichloroethylene. The abundance of and increased under the BC_2 treatment, which was favorable to the removal of trichloroethylene. The stabilization of the microbial community structure was probably maintained by , , , , , and . According to the predictive analysis of microbial metabolic pathways, the abundance of xenobiotics biodegradation and metabolism genes and the folding, sorting, and degradation of genes were the highest under the BC_2 treatment. Thus, the NaOH-modified BC composite could prompt the removal of trichloroethylene in simulated aquifer soil, probably due to the increase in the abundance of soil-degrading bacteria and the expression of degradation genes, demonstrating that the NaOH-modified BC composite could be used for the remediation of the organic-contaminated industry sites as a new composite material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202207273 | DOI Listing |
J Hazard Mater
December 2024
Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
Highly toxic halo-/nitro-substituted organics, often in low concentrations and with high hydrophobicity, make it difficult to obtain electrons for reduction when strongly electron-competing substances (e.g., O, H/HO, NO) coexist.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:
Population expansion, industrialization, urban development, and climate changes increased the water crisis in terms of drinking water availability. Among the various nanomaterials for nanoremediation towards water treatment, FeS-based nanocomposites have emerged as promising candidates in the adsorptive and photocatalytic removal of contaminants. This paper, therefore, evaluates the potential of FeS-based nanocomposites for environmental applications, more specifically the combined use of adsorption and photocatalysis.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China,. Electronic address:
In situ remediation of low-permeability soils contaminated with trichloroethylene (TCE) is challenging due to limited mass transfer and low bioavailability in clay soils. The electrokinetic-enhanced bioremediation (EK-BIO) system offers a promising solution by combining electrokinetics with bioremediation to address these challenges. While previous studies have demonstrated microbial succession and TCE removal, the long-term performance of dechlorination and interactions between electrode reactions and anaerobic dechlorination remain unclear.
View Article and Find Full Text PDFEnviron Technol
November 2024
Chongqing Juchuan Environmental Engineering CO., LTD., Chongqing, People's Republic of China.
Water Res
January 2025
College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China. Electronic address:
Structural differences among non-aqueous phase liquids (NAPLs) result in varying oxidation rates, limiting mass transfer between NAPLs and oxidants and seriously impairing the effectiveness of remediation via traditional in-situ chemical oxidation. To tackle this challenge, a novel approach is proposed for remediating multi-NAPL-polluted groundwater that leverages phase transfer catalysis (PTC) to enhance heterogeneous mass transfer by transferring oxidants from groundwater to NAPLs. Meanwhile, "oxidation-in-situ activation" is achieved through bifunctional oxidation using permanganate and peroxymonosulfate (PP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!