Effects of long-term tillage practices on the stability of soil aggregates and organic carbon in black soil farmland.

Ying Yong Sheng Tai Xue Bao

Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences/Key Laboratory of Crop Ecophysiology and Farming System in Northeast China, Ministry of Agriculture and Rural Affairs, Changchun 130033, China.

Published: July 2023

We examined the effects of different tillage practices on plough layer soil structure and organic carbon stabilization in black soil farmland with a long-term positioning platform. The wet-sieving method and infrared spectroscopy method were used to investigate the impacts of conventional tillage (CT), no-tillage (NT), sub-soiling tillage (ST), and moldboard plowing tillage (MP) on soil aggregates distribution and organic carbon characteristics in 0-40 cm soil layers. Compared to CT, both NT and ST treatments significantly increased the proportion of large macroaggregates (>2 mm) in the topsoil layer (0-20 cm)and that of small macroaggregates (0.25-2 mm) in the subsoil layer (20-40 cm) for NT, ST, and MP. NT, ST, and MP treatments resulted in higher mean weight dia-meter (MWD) and mean geometric diameter (GMD) of soil aggregates in both the topsoil and subsoil layers. NT treatment improved organic carbon contents in bulk soil and large macroaggregates in the topsoil layer, while ST and MP enhanced organic carbon contents in bulk soil and large macroaggregates in the subsoil layer. The contribution rate of small macroaggregates organic carbon content to the total was between 68.9% and 83.4%. Furthermore, the organic carbon chemical stabilization of soil body and aggregates increased in the topsoil and subsoil layers under NT treatment compared to others. The MWD had a positive correlation with the organic carbon content and chemical stability of soil body and small macroaggregates. These findings offered a theoretical basis for understanding the impacts of different tillage practices on the stability of soil aggregate and organic carbon in black soil region.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202307.027DOI Listing

Publication Analysis

Top Keywords

organic carbon
36
soil
13
tillage practices
12
stability soil
12
soil aggregates
12
black soil
12
large macroaggregates
12
small macroaggregates
12
organic
9
carbon
9

Similar Publications

Arctic soil carbon insulation averts large spring cooling from surface-atmosphere feedbacks.

Proc Natl Acad Sci U S A

January 2025

Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.

The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.

View Article and Find Full Text PDF

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

Converting CO2 to high-value fine chemicals represents one of the most promising approaches to combat global warming and subsequently achieve a sustainable carbon cycle. Herein, we contribute an organoboron functionalized ultra-thin metal-organic nanosheet (MON), termed TCPB-Zr-NS, featuring an abundance of exposed Lewis acidic B and formate sites, which can effectively promote CO2 conversion upon the addition of Lewis basic o-phenylenediamines. Compared with the prototypical 3D analogue TCPB-Zr-3D, the resultant TCPB-Zr-NS showcases dramatically improved catalytic activity for the cyclization of o-phenylenediamine as a result of the highly exposed active sites and efficient substrates/products diffusion.

View Article and Find Full Text PDF

One-Pot Transition-Metal-Free Synthesis of π-Extended Bipolar Polyaromatic Hydrocarbons.

Angew Chem Int Ed Engl

January 2025

Instytut Chemii Organicznej PAN: Instytut Chemii Organicznej Polskiej Akademii Nauk, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.

The development of straightforward synthetic methods for photoactive polycyclic aromatic hydrocarbons (PAHs) that avoid Pd-catalyzed or radical-based processes remains a challenge. Such methods are essential to reducing the cost and environmental impact of organic photodevices. In this work, we present a one-pot synthetic approach for creating novel bipolar PAHs with extended π-conjugation, which are not accessible via conventional Pd-catalyzed routes.

View Article and Find Full Text PDF

Bioinspired Photo-Thermal Catalytic System using Covalent Organic Framework-based Aerogel for Synchronous Seawater Desalination and H2O2 Production.

Angew Chem Int Ed Engl

January 2025

Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.

Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!