The aim of the present study was to investigate changes in the gut microbiome both during and after consumption of malted rice amazake (MR-Amazake), a fermented food from Japan, in-home healthcare patients with disabilities, including patients with severe motor and intellectual disabilities. We monitored 12 patients who consumed MR-Amazake for 6 wk and investigated them before and after the intervention as well as 6 wk after the end of intake to compare their physical condition, diet, type of their medication, constipation assessment scale, and analysis of their comprehensive fecal microbiome using 16S rRNA sequencing. Their constipation symptoms were significantly alleviated, and principal coordinate analysis revealed that 30% of patients showed significant changes in the gut microbiome after MR-Amazake ingestion. Furthermore, was strongly associated with these changes. These changes were observed only during MR-Amazake intake; the original gut microbiome was restored when MR-Amazake intake was discontinued. These results suggest that 6 wk is a reasonable period of time for MR-Amazake to change the human gut microbiome and that continuous consumption of MR-Amazake is required to sustain such changes. The consumption of malted rice amazake (MR-Amazake) showed significant changes in the gut microbiome according to principal coordinate analysis in some home healthcare patients with disabilities, including those with severe motor and intellectual disabilities. After discontinuation of intake, the gut microbiome returned to its original state. This is the first pilot study to examine both the changes in the gut microbiome and their sustainability after MR-Amazake intake.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00062.2023DOI Listing

Publication Analysis

Top Keywords

gut microbiome
32
changes gut
16
healthcare patients
12
patients disabilities
12
consumption malted
12
malted rice
12
rice amazake
12
mr-amazake intake
12
microbiome
9
mr-amazake
9

Similar Publications

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Elimination of oral foci of infection might lead to clinical improvement of Graves' orbitopathy.

Graefes Arch Clin Exp Ophthalmol

January 2025

Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland.

Purpose: Graves' disease (GD) and Graves' orbitopathy (GO) are multifactorial disorders with links to the gut microbiome and autoimmunity. It is observed that patients with GD exhibit altered gut microbiome diversity. However, little is known about the role of oral microbiota in GD and GO.

View Article and Find Full Text PDF

Background: Peripheral metabolic health status can reflect and/or contribute to the risk of Alzheimer's disease (AD). Peripheral metabolic health status can be indicated by metabolic health markers, such as inflammatory biomarker glycoprotein acetyls (GlycA) and specific components of lipoproteins (e.g.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common type of dementia which results in debilitating memory loss as the disease advances. However, among older adults with AD, some may experience rapid cognitive decline while others may maintain a stable cognitive status for years. In addition to the amyloid plaques, tau tangles, and neuronal inflammation characteristic of AD, there is strong evidence of dysregulation in the peripheral immune system, including decreased naïve T cells and increased memory T cells among older adults with AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Medicine, Duke University, Durham, NC, USA.

Background: The GI tract is home to approximately 70% of the body's immune cells, >100 million enteric neurons, and ∼40 trillion bacteria. This co-localization of myriad immune, neural and bacterial cells creates complex interactions that regulate almost every tissue in the body, including the brain. Importantly, peripheral and GI inflammation occur in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer (AD) contributing to gut brain axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!