Rapid and accurate determination of luteolin is of great significance for pharmaceutical quality control. Herein, a disposable and sensitive luteolin sensor was fabricated by a hydrothermal method with carbon paper as substrate where ZIF-8 grew on GR . Notably, the large specific surface area of ZIF-8 provided active sites on the electrode surface and the ability of GR to promote electron transfer greatly improved the sensitivity towards the oxidation of luteolin. Under the optimum conditions, the ZIF-8@GR/CP showed excellent detection performance for luteolin with a linear detection range of 0.04-3.2 μM and 3.2-120 μM, with LOD of 12 nM (S/N = 3). Furthermore, this disposable and sensitive sensor was successfully applied for the quantitative detection of luteolin in a capsule of .

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ay01126gDOI Listing

Publication Analysis

Top Keywords

disposable sensitive
12
sensitive sensor
8
carbon paper
8
determination luteolin
8
luteolin
6
sensor based
4
based zif-8@graphene
4
zif-8@graphene modified
4
modified carbon
4
paper electrode
4

Similar Publications

Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention.

View Article and Find Full Text PDF

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

An Integrated, Portable, and Automatic Digital Detection System for Hepatitis B Virus Using Hybrid Magnetic System.

Small Methods

January 2025

College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.

Article Synopsis
  • The integrated portable and automatic digital detection system (IPADS) is a new tool designed for rapid and accurate diagnosis of infectious diseases through nucleic acid detection.
  • It uses a hybrid magnetic system (HMS) to efficiently extract genetic material, simplifying traditional methods and allowing for quick sample processing with over 80% extraction efficiency.
  • In tests for hepatitis B virus (HBV) DNA, IPADS showed strong alignment with standard PCR methods, proving its potential as a reliable option for point-of-care testing.
View Article and Find Full Text PDF

Leveraging self-signal amplifying poly(acrylic acid)/polyaniline electrodes for label-free electrochemical immunoassays in protein biomarker detection.

Bioelectrochemistry

December 2024

Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

Accurate quantification of specific biomarkers is essential for clinical diagnosis and evaluating therapeutic efficacy. A self-signal-amplifying poly(acrylic acid) (PAA)/polyaniline (PANI) film-modified disposable and cost-effective screen-printed carbon electrode (SPCE) has been developed for constructing new label-free immunosensors targeting two model biomarkers: human immunoglobulin G (IgG) and alpha-fetoprotein (AFP). The electrochemically deposited PAA/PANI film on the SPCE serves a dual function: both a bio-immobilization support and a signal amplifier, enhancing biomarker detection sensitivity and efficiency.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!