AI Article Synopsis

  • The compound CHNO ·Br·CHNO is a bromide salt made from a 50:50 mixture of two related organic molecules: one is a tri-ethyl-azaniumyl-carboxylic acid, and the other is its zwitterionic form.
  • These two molecules are connected by a hydrogen bond involving a partially occupied bridging hydrogen atom from the carboxylic acid group.
  • The tetra-lkyl-ammonium group has a nearly perfect tetrahedral shape, with specific bond lengths consistent with established values, and features an orientation where the carbonyl oxygen forms intra-molecular hydrogen bonds.

Article Abstract

The title compound, CHNO ·Br·CHNO, crystallizes as the bromide salt of a 50:50 mixture of (tri-ethyl-azaniumyl)-carb-oxy-lic acid and the zwitterionic (tri-ethyl-azaniumyl)-carboxyl-ate. The two organic entities are linked by a half-occupied bridging carb-oxy-lic acid hydrogen atom that is hydrogen-bonded to the carboxyl-ate group of the second mol-ecule. The tetra-lkyl-ammonium group adopts a nearly perfect tetra-hedral shape around the nitro-gen atom with bond lengths that agree with known values. The carb-oxy-lic acid/carboxyl-ate group is oriented to one of the ethyl groups on the ammonium group, and the carbonyl oxygen atom is engaged in intra-molecular C-H⋯O hydrogen bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483553PMC
http://dx.doi.org/10.1107/S2056989023006850DOI Listing

Publication Analysis

Top Keywords

crystal structure
4
structure carb-oxy-meth-yltri-ethyl-aza-nium
4
carb-oxy-meth-yltri-ethyl-aza-nium bromide-2-tri-ethyl-aza-n-ium-ylacetate
4
bromide-2-tri-ethyl-aza-n-ium-ylacetate 1/1
4
1/1 hydrogen-bonded
4
hydrogen-bonded dimer
4
dimer title
4
title compound
4
compound chno
4
chno ·br·chno
4

Similar Publications

Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature.

View Article and Find Full Text PDF

When water is confined in a nanochannel, its thermodynamic and kinetic properties change dramatically compared to the macroscale. To investigate these phenomena, we conducted nonequilibrium molecular dynamics simulations on the heat transfer in copper-water nanochannels with lengths ranging from 12 to 20 nm in the absence and presence of an electric field. The results indicate that in the absence of an electric field ( = 12-20 nm), the binding force between water molecules in the 20 nm nanochannel is the weakest, facilitating thermal motion in the liquid phase.

View Article and Find Full Text PDF

Although Pb-based metal halide perovskites (MHPs) have excellent photoelectric characteristics, their toxicity remains a limiting factor for their widespread application. In the paper, a series of CsCuClxBr3-x (x = 1, 2, 3) MHP microcrystals were developed and their hydrogen evolution performance in ethanol and HX (X = Cl, Br) was also studied. Among them, CsCuCl3 microcrystals exhibit high hydrogen evolution performance in both HX and ethanol, attributed to their longest average lifetime and suitable band structure.

View Article and Find Full Text PDF

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

Pressure-Dependent Electronic Superlattice in the Kagome Superconductor CsV_{3}Sb_{5}.

Phys Rev Lett

December 2024

Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.

We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7  GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: