Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A central task in expression quantitative trait locus (eQTL) analysis is to identify cis-eGenes (henceforth "eGenes"), i.e., genes whose expression levels are regulated by at least one local genetic variant. Among the existing eGene identification methods, FastQTL is considered the gold standard but is computationally expensive as it requires thousands of permutations for each gene. Alternative methods such as eigenMT and TreeQTL have lower power than FastQTL. In this work, we propose ClipperQTL, which reduces the number of permutations needed from thousands to 20 for data sets with large sample sizes ( 450) by using the contrastive strategy developed in Clipper; for data sets with smaller sample sizes, it uses the same permutation-based approach as FastQTL. We show that ClipperQTL performs as well as FastQTL and runs about 500 times faster if the contrastive strategy is used and 50 times faster if the conventional permutation-based approach is used. The R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491229 | PMC |
http://dx.doi.org/10.1101/2023.08.28.555191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!