A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ClipperQTL: ultrafast and powerful eGene identification method. | LitMetric

ClipperQTL: ultrafast and powerful eGene identification method.

bioRxiv

Department of Statistics and Data Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Published: August 2023

A central task in expression quantitative trait locus (eQTL) analysis is to identify cis-eGenes (henceforth "eGenes"), i.e., genes whose expression levels are regulated by at least one local genetic variant. Among the existing eGene identification methods, FastQTL is considered the gold standard but is computationally expensive as it requires thousands of permutations for each gene. Alternative methods such as eigenMT and TreeQTL have lower power than FastQTL. In this work, we propose ClipperQTL, which reduces the number of permutations needed from thousands to 20 for data sets with large sample sizes ( 450) by using the contrastive strategy developed in Clipper; for data sets with smaller sample sizes, it uses the same permutation-based approach as FastQTL. We show that ClipperQTL performs as well as FastQTL and runs about 500 times faster if the contrastive strategy is used and 50 times faster if the conventional permutation-based approach is used. The R package ClipperQTL is available at https://github.com/heatherjzhou/ClipperQTL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491229PMC
http://dx.doi.org/10.1101/2023.08.28.555191DOI Listing

Publication Analysis

Top Keywords

egene identification
8
data sets
8
sample sizes
8
contrastive strategy
8
permutation-based approach
8
times faster
8
clipperqtl
4
clipperqtl ultrafast
4
ultrafast powerful
4
powerful egene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!