Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed for seven days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during diet-induced weight loss (adjusted p < 0.05). Spearman correlation revealed the relative abundances of (ρ = 0.6385, p = 0.0006) and (ρ = 0.5269, p = 0.0068) were significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during diet-induced weight loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491335PMC
http://dx.doi.org/10.21203/rs.3.rs-3273531/v1DOI Listing

Publication Analysis

Top Keywords

weight loss
20
propionic acid
16
acid production
8
intentional weight
8
maintenance diet
8
microbial community
8
community structure
8
diet-induced weight
8
cats
6
weight
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!