Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491137PMC
http://dx.doi.org/10.1101/2023.08.30.555632DOI Listing

Publication Analysis

Top Keywords

pmat function
12
context fear
12
fear conditioning
8
swim stress
8
male heterozygotes
8
enhanced context
8
fear expression
8
sham stress
8
pmat
6
fear
6

Similar Publications

Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes.

View Article and Find Full Text PDF

Dopamine stimulates CDP-diacylglycerol biosynthesis through D-like receptors, particularly the D subtype most of which is intracellularly localized. CDP-diacylglycerol regulates phosphatidylinositol-4,5-bisphosphate-dependent signaling cascades by serving as obligatory substrate for phosphatidylinositol biosynthesis. Here, we used acute and organotypic brain tissues and cultured cells to explore the mechanism by which extracellular dopamine acts to modulate intracellular CDP-diacylglycerol.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used advanced imaging techniques to analyze how different parts of the hippocampus connect with specific cortical pathways during brain development, with the front part linked to the anterior temporal pathway and the back part to the posterior medial pathway.
  • * The study found that as brains develop, there is a shift in connectivity from the back to the front of the hippocampus, emphasizing its role in episodic memory and identifying key regions that influence how the hippocampus integrates into broader brain functions.
View Article and Find Full Text PDF

Mesoridazine and metoclopramide are cationic drugs that are distributed in the human brain despite being substrates of multidrug resistance protein 1 (MDR1), an efflux transporter expressed at the blood-brain barrier (BBB). We investigated their transport mechanisms at the BBB using hCMEC/D3, a human cerebral microvascular endothelial cell line often used as an in vitro BBB model. The cells exhibited time- and concentration-dependent uptake of mesoridazine and metoclopramide, with K values of 34 and 277 µM, respectively.

View Article and Find Full Text PDF

Milk exosome-infused fibrous matrix for treatment of acute wound.

J Control Release

December 2024

Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:

To provide an advanced therapy for wound recovery, in this study, pasteurized bovine milk-derived exosomes (mEXO) are immobilized onto a polydopamine (PDA)-coated hyaluronic acid (HA)-based electrospun nanofibrous matrix (mEXO@PMAT) via a simple dip-coating method to formulate an mEXO-immobilized mesh as a wound-healing biomaterial. Purified mEXOs (∼82 nm) contain various anti-inflammatory, cell proliferation, and collagen synthesis-related microRNAs (miRNAs), including let-7b, miR-184, and miR-181a, which elicit elevated mRNA expression of keratin5, keratin14, and collagen1 in human keratinocytes (HaCaT) and fibroblasts (HDF). The mEXOs immobilized onto the PDA-coated meshes are gradually released from the meshes over 14 days without burst-out effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!