A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A simple and efficient strategy for cell-based and cell-free-based therapies in acute liver failure: hUCMSCs bioartificial liver. | LitMetric

Acute liver failure (ALF) is a life-threatening condition. Cell-based and cell-free-based therapies have proven to be effective in treating ALF; however, their clinical application is limited by cell tumorigenicity and extracellular vesicle (EV) isolation in large doses. Here, we explored the effectiveness and mechanism of umbilical cord mesenchymal stem cells (hUCMSCs)-based bioartificial liver (hUCMSC-BAL), which is a simple and efficient strategy for ALF. D-galactosamine-based pig and mouse ALF models were used to explore the effectiveness of hUCMSC-BAL and hUCMSC-sEV therapies. Furthermore, high-throughput sequencing, miRNA transcriptome analysis, and western blot were performed to clarify whether the miR-139-5p/PDE4D axis plays a critical role in the ALF model in vivo and in vitro. hUCMSC-BAL significantly reduced inflammatory responses and cell apoptosis. hUCMSC-sEV significantly improved liver function in ALF mice and enhanced the regeneration of liver cells. Furthermore, hUCMSC-sEV miRNA transcriptome analysis showed that miR-139-5p had the highest expression and that PDE4D was one of its main target genes. The sEV miR-139-5p/PDE4D axis played a role in the treatment of ALF by inhibiting cell apoptosis. Our data indicate that hUCMSC-BAL can inhibit cytokine storms and cell apoptosis through the sEV miR-139-5p/PDE4D axis. Therefore, we propose hUCMSC-BAL as a therapeutic strategy for patients with early ALF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486334PMC
http://dx.doi.org/10.1002/btm2.10552DOI Listing

Publication Analysis

Top Keywords

mir-139-5p/pde4d axis
12
cell apoptosis
12
simple efficient
8
efficient strategy
8
cell-based cell-free-based
8
cell-free-based therapies
8
acute liver
8
liver failure
8
bioartificial liver
8
alf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!