Combination of biodegradable hydrogel and antioxidant bioadhesive for treatment of breast cancer recurrence and radiation skin injury.

Bioact Mater

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China.

Published: January 2024

Postoperative radiotherapy is the standard method for inhibition of breast cancer recurrence and metastasis, whereas radiation resistant and ineluctable skin radiation injury are still key problems encountered in the prognosis of breast cancer. Herein, we design an internally implantable biodegradable hydrogel and extracutaneously applicable antioxidant bioadhesive to concurrently prevent postoperative tumor recurrence and radioactive skin injury after adjuvant radiotherapy. The biodegradable silk fibroin/perfluorocarbon hydrogel loading doxorubicin (DOX) formed by consecutive ultrasonication-induced β-sheets-crosslinked amphiphilic silk fibroin/perfluorocarbon/DOX nanoemulsion, exhibits continuous release of oxygen in physiological environment to improve hypoxia and sensitivity of radiotherapy, as well as simultaneous release of DOX to finally achieve effective anti-cancer effect. A stretchable bioadhesive is fabricated by copolymerization of α-thioctic acid and N, N-diacryloyl-l-lysine, and gold nanorods and gallic acid are loaded into the bioadhesive to afford gentle photothermal therapy and antioxidant functions. The near-infrared light-induced controlled release of gallic acid and mild photothermal therapy can efficiently eliminate excess free radicals generated by radiotherapy and promote radioactive wound healing. Ultimately, animal studies substantiate the efficacy of our methodology, wherein the post-tumor resection administration of hydrogel and concomitant application of an antioxidant bioadhesive patch effectively inhibit tumor recurrence and attenuate the progression of skin radiation damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482898PMC
http://dx.doi.org/10.1016/j.bioactmat.2023.08.021DOI Listing

Publication Analysis

Top Keywords

antioxidant bioadhesive
12
breast cancer
12
biodegradable hydrogel
8
cancer recurrence
8
skin injury
8
skin radiation
8
tumor recurrence
8
gallic acid
8
photothermal therapy
8
bioadhesive
5

Similar Publications

An effective drug-free hydrogel for accelerating the whole healing process of bacteria-infected wounds.

Biomater Sci

December 2024

Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.

Wound healing is a dynamic and complex process involving hemostasis, inflammation, fibroblast proliferation, and tissue remodeling. This process is highly susceptible to bacterial infection, which often leads to impaired and delayed wound repair. While antibiotic therapy remains the primary clinical approach for treating bacteria-infected wounds, its widespread use poses a significant risk of developing bacterial resistance.

View Article and Find Full Text PDF

Dynamic Covalent Prodrug Nanonetworks via Reaction-Induced Self-Assembly for Periodontitis Treatment.

ACS Nano

December 2024

Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University institution, Wenzhou, Zhejiang 325035, China.

Periodontitis is characterized by dysbiotic biofilms, gingival inflammation, and bone resorption, highlighting the urgent need for a comprehensive approach to drug combination therapy. In this study, we introduce dynamic covalent nanonetworks (dcNNWs) synthesized through a one-pot, four-component reaction-induced self-assembly method using polyamines, 2-formylphenylboronic acid, epigallocatechin gallate, and alendronate. The formation of iminoboronate bonds drives the creation of dcNNWs, allowing controlled release in the periodontitis microenvironment.

View Article and Find Full Text PDF

The scavenging of the excess reactive oxygen species (ROS) induced by radiation is fundamental for radiation protection. However, directly applying antioxidants results in low bioavailability and side effects. Superoxide dismutase (SOD) and catalase (CAT) have high ROS clearance efficiency, whereas their application is limited by the enzyme inactivation, making it difficult to exhibit significant therapeutic effects.

View Article and Find Full Text PDF

The demand for natural-based formulations in chronic wound care has increased, driven by the need for biocompatible, safe, and effective treatments. Natural polysaccharide-based emulsions enriched with vegetable oils present promising benefits for skin repair, offering structural support and protective barriers suitable for sensitive wound environments. This study aimed to develop and evaluate semisolid polysaccharide-based emulsions for wound healing, incorporating avocado () and blackcurrant () oils (AO and BO, respectively).

View Article and Find Full Text PDF

Bacterial infections pose significant challenges in wound healing and are a serious threat to human health. Hydrogels have emerged as an ideal wound dressing due to their three-dimensional network, which facilitates exudate absorption and maintains a moist environment conducive to healing. Herein, we developed integrated hydrogels composed of poly(thioctic acid) (PTA), polydopamine (PDA), and curcumin (Cur).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!