Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The accurate detection of external defects in kiwifruit is an important part of postharvest quality assessment. Previous studies have not considered the problems posed by the actual grading environment. In this study, we designed a novel approach based on improved Yolov5 to achieve real-time and efficient non-destructive detection of multiple defect categories in kiwifruit. First, a kiwifruit image acquisition device based on grading lines was developed to enhance the image acquisition. Subsequently, a kiwifruit dataset was constructed based on the external defect characteristics and a new data enhancement method was proposed to augment the kiwifruit samples. Thereafter, the SPD-Conv and DW-Conv modules were combined to improve Yolov5s, with EIOU as the loss calculation function. The results demonstrated that the improved model training loss value was 0.013 lower, the convergence was accelerated, the number of parameters was reduced, and the computational effort was increased. The detection accuracies of the samples in the test set, which included healthy, leaf-rubbing damaged, healed cuts or scarred, and sunburned samples, were 98.8%, 98.7%, 97.6%, and 95.9%, respectively, with an overall detection accuracy of 97.7%. The detection time was 8.0 ms, thereby meeting real-time sorting demands. The average detection accuracy and model size of SSD, Yolov5s, Yolov7, and Yolov5-Ours were compared. When the confidence threshold was 0.5, the detection accuracy of Yolov5-Ours was 10% and 6.4% higher than that of SSD and Yolov5s, respectively. In terms of the model size, Yolov5-Ours was approximately 6.5- and 4-fold smaller than SSD and Yolov7, respectively. Thus, Yolov5-Ours achieved the highest accuracy, adaptability, and robustness for the detection of all kiwifruit categories as well as a small volume and portability. These results can provide technical support for the non-destructive detection and grading of agricultural products in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486894 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1170221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!